PHYSICS 201 TEST 3 EQUATIONS

Kinematics (Our Old Friends)

	Variables				
Equation	X	а	V	V _o	t
$v = v_o + at$	-	+	+	+	+
$x = \frac{1}{2} (v_o + v)t$	+	-	+	+	+
$x = v_0 t + \frac{1}{2} a t^2$	+	+	-	+	+
$v^2 = v_o^2 + 2ax$	+	+	+	+	-

Energy and Work and Power

$$K = \frac{1}{2}mv^2 \qquad W = Fd\cos\phi$$

$$\Delta E_{\rm mec} = \Delta K + \Delta U$$

No friction:

$$W = \Delta K + \Delta U$$

Friction:

$$W = \Delta E_{\rm mec} + \Delta E_{\rm th}$$

$$P_{\text{avg}} = \frac{W}{\Delta t}$$

$$P_{\text{avg}} = \frac{\Delta E}{\Delta t}$$
.

$$P_{\text{avg}} = Fv \cos \phi$$
.

Hooke's Law (Springs)

$$F_x = -kx$$

$$F_x = -kx$$
 $W_s = \frac{1}{2}kx_i^2 - \frac{1}{2}kx_f^2$ $U(x) = \frac{1}{2}kx^2$

$$U(x) = \frac{1}{2}kx^2$$

Center of Mass

$$x_{\rm com} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}.$$

$$\vec{v}_{\text{com}} = \frac{\vec{P}}{m_1 + m_2} = \frac{\vec{p}_{1i} + \vec{p}_{2i}}{m_1 + m_2}.$$

Momentum and Impulse

$$\vec{p} = m\vec{v}$$

$$\Delta \vec{p} = \vec{J}$$

$$J = F_{\rm avg} \, \Delta t.$$

$$\vec{P} = \text{constant}$$
 (closed, isolated system)

Constants

$$g = 9.81 \text{ m/s}^2$$