Essentials of Geology, 11e

Igneous Rocks and Intrusive Activity Chapter 3

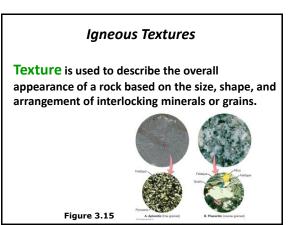
Instructor – Jennifer Barson Spokane Falls Community College Geology 101

Southwestern Illinois Colleg Jennifer Cole

Characteristics of Magma

- Igneous rocks form as molten rock cools and solidifies
- General Characteristic of magma
 - Parent material of igneous rocks
 - Forms from partial melting of rocks inside Earth
 - Magma that reaches the surface is called lava

Characteristics of Magma

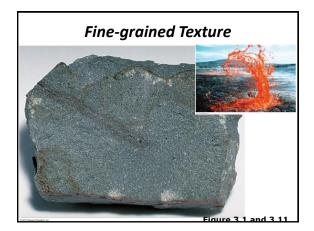

- General Characteristic of magma
 - Rocks formed from lava at the surface are classified as extrusive, or volcanic rocks
 - Rocks formed from magma that crystallizes at depth are termed intrusive, or plutonic rocks

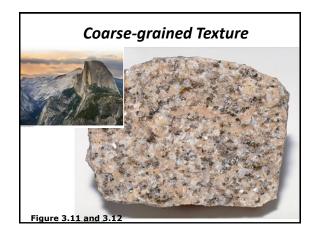
Characteristics of Magma

- The nature of magma
 - Consists of three components:
 - A liquid portion, called melt, that is composed of mobile ions
 - Solids, if any, are silicate minerals that have already crystallized from the melt
 - Volatiles, which are gases dissolved in the melt, including water vapor (H₂O), carbon dioxide (CO₂), and sulfur dioxide (SO₂)

Characteristics of Magma

- Crystallization of magma
 - Texture in igneous rocks is determined by the size and arrangement of mineral grains
 - Igneous rocks are typically classified by their overall-
 - $-\,\mbox{Texture}$ (dictated by cooling rate and
 - environment...where it cooled)
 - Mineral composition

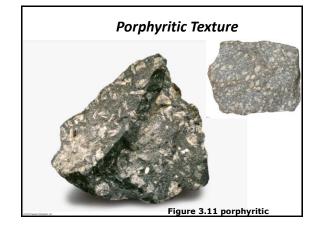



Igneous Textures

- Factors affecting crystal size
 - Rate of cooling
 - Slow rate promotes the growth of fewer but larger crystals
 - Fast rate forms many small crystals
 - Very fast rate forms glass
 - Amount of silica (SiO₂) present
 - -Amount of dissolved gases

Igneous Textures

- Types of igneous textures
 - Aphanitic (fine-grained) texture
 - Rapid rate of cooling of lava or magma
 - Microscopic crystals
 - May contain vesicles (holes from gas bubbles)
 - Phaneritic (coarse-grained) texture
 - Slow cooling
 - Crystals can be identified without a microscope

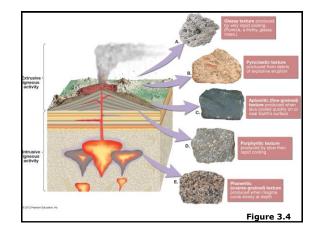


Igneous Textures

• Types of igneous textures

- Porphyritic texture

- Minerals form at different temperatures as well as differing rates
- Large crystals, called phenocrysts, are embedded in a matrix of smaller crystals, called the groundmass
- -Glassy texture
 - Very rapid cooling of molten rock
 - Resulting rock is called obsidian

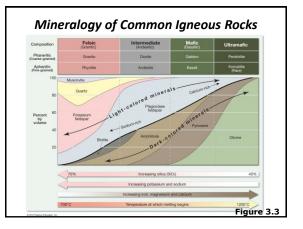


- Types of igneous textures
 - Pyroclastic texture
 - Various fragments ejected during a violent volcanic eruption
 - Textures often appear to more similar to sedimentary rocks
 - Pegmatitic texture
 - Exceptionally coarse grained
 - Form in late stages of crystallization or granitic magmas

- Igneous rocks are composed primarily of silicate minerals
 - Dark (or ferromagnesian) silicates
 - Olivine
 - Pyroxene
 - Amphibole
 - Biotite mica
 - Light (or nonferromagnesian) silicates
 - Quartz
 - Muscovite mica
 - Feldspars

Igneous Compositions

- There are 4 basic compositional groups
 - 1. Felsic (granitic)
 - Granite, rhyolite, obsidian, and pumice
 - 2. Intermediate (andesitic)
 - Diorite and andesite
 - 3. Mafic (basaltic)
 - Gabbro and basalt
 - 4. Ultramafic (upper mantle rock)
 - Peridotite and komatiite

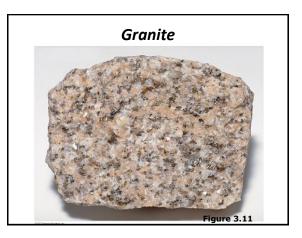

- · Granitic versus basaltic compositions
 - Granitic composition
 - Composed of light-colored silicates
 - Designated as being felsic (feldspar and silica) in composition
 - Contains high amounts of silica (SiO₂)
 - Major constituents of continental crust

Igneous Compositions

- Granitic versus basaltic compositions
 - Basaltic composition
 - Composed of dark silicates and calcium-rich feldspar
 - Designated as being mafic (magnesium and ferrum, for iron) in composition
 - More dense than granitic rocks
 - Comprise the ocean floor as well as many volcanic islands

Igneous Compositions

- Other compositional groups
 - Intermediate (or andesitic) composition
 - Contain at least 25 percent dark silicate minerals
 - Associated with explosive volcanic activity
 - Ultramafic composition
 - Rare composition that is high in magnesium and iron
 - Composed entirely of ferromagnesian silicates

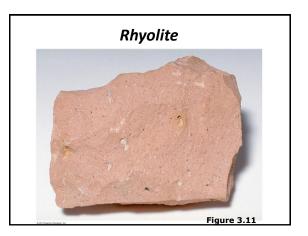

Igneous Compositions

- · Silica content as an indicator of composition
 - Silica content in crustal rocks exhibits a considerable range
 - A low of 45 percent in ultramafic rocks
 - Over 70 percent in felsic rocks

Igneous Compositions

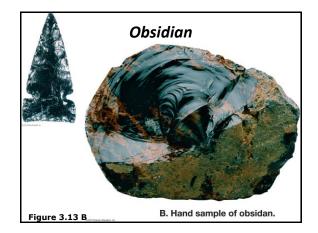
- · Silica content influences a magma's behavior
 - Granitic magma
 - High silica content
 - Extremely viscous
 - Liquid exists at temperatures as low as 700°C
 - Basaltic magma
 - Much lower silica content
 - Fluid-like behavior
 - Crystallizes at higher temperatures

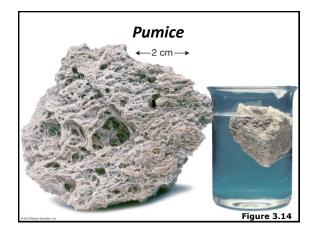
- Naming igneous rocks felsic rocks
 - Granite
 - Phaneritic, course grained
 - Over 25 percent quartz, about 65 percent or more feldspar
 - May exhibit a porphyritic texture
 - Very abundant as it is often associated with mountain building
 - The term granite covers a wide range of mineral compositions



Igneous Compositions

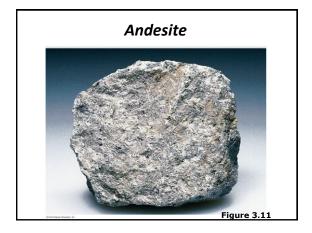
• Naming igneous rocks – felsic rocks


- Rhyolite


- Extrusive equivalent of granite
- May contain glass fragments and vesicles
- Aphanitic texture, fine grained
- Less common and less voluminous than granite

Igneous Compositions

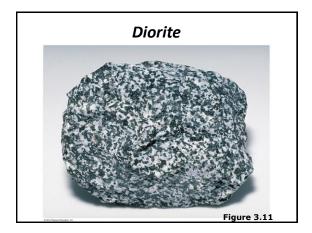
- Naming igneous rocks felsic rocks
 - Obsidian
 - Dark colored
 - Glassy texture
 - -Pumice
 - Volcanic
 - Glassy texture
 - Frothy appearance with numerous voids



• Naming igneous rocks – intermediate rocks

-Andesite

- Volcanic origin
- Aphanitic texture
- Often resembles rhyolite
- Light to dark shades of grey color

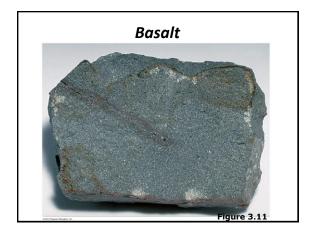


Igneous Compositions

• Naming igneous rocks – intermediate rocks

- Diorite

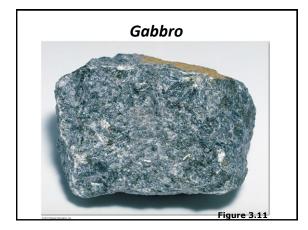
- Plutonic equivalent of andesite
- Coarse grained
- Intrusive
- Composed mainly of intermediate feldspar and amphibole
- "salt and pepper" color

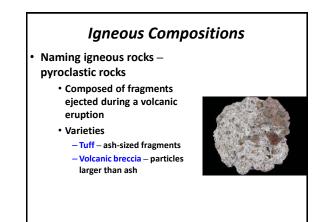


Igneous Compositions

• Naming igneous rocks – mafic rocks

-Basalt


- Volcanic origin
- Aphanitic texture
- Composed mainly of pyroxene and calciumrich plagioclase feldspar
- Most common extrusive igneous rock
- May contain vesicules



• Naming igneous rocks –mafic rocks

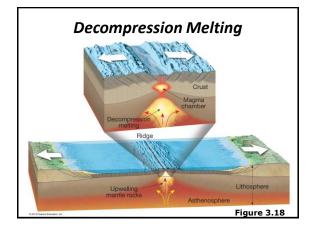
- Gabbro

- Intrusive equivalent of basalt
- Phaneritic texture consisting of pyroxene and calcium-rich plagioclase
- Makes up a significant percentage of the oceanic crust

Origin of Magma

- Highly debated topic
- Generating magma from solid rock
 - Produced from partial melting of rocks in the crust and upper mantle
 - Consider the-
 - Role of heat
 - Role of pressure
 - Role of volatiles

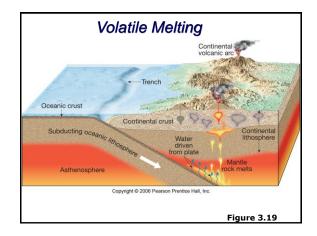
Origin of Magma


-Role of heat

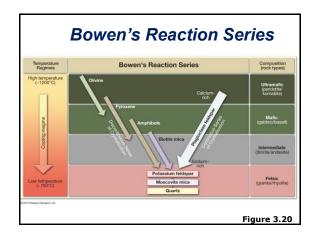
- Temperature increases within Earth's upper crust (called the geothermal gradient) average between 20°C to 30°C per kilometer
- Rocks in the lower crust and upper mantle are near their melting points
- Any additional heat (from rocks descending into the mantle or rising heat from the mantle) may induce melting

Origin of Magma

- Role of pressure


- An increase in confining pressure causes an increase in a rock's melting temperature or conversely, reducing the pressure lowers the melting temperature
- When confining pressures drop, decompression melting occurs

Origin of Magma


- Role of volatiles

- Volatiles (primarily *water*) cause rocks to melt at lower temperatures
- This is particularly important where oceanic lithosphere descends into the mantle
- Common at convergent plate boundaries

Evolution of Magmas

- A single volcano may extrude lavas exhibiting very different compositions
- Bowen's reaction series and the composition of igneous rocks
 - N.L. Bowen demonstrated that as a magma cools, minerals crystallize in a systematic fashion based on their melting points

Evolution of Magmas

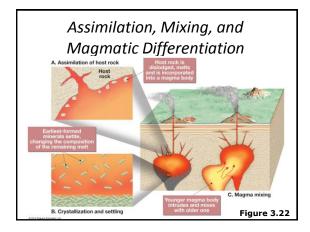
Bowen's reaction series

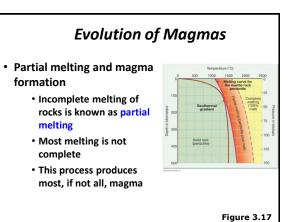
- During crystallization, the composition of the liquid portion of the magma continually changes
 - Composition changes due to <u>removal of</u> <u>elements</u> by earlier-forming minerals
 - The silica component of the melt becomes enriched as crystallization proceeds
 - Minerals in the melt can chemically react and change

Evolution of Magmas

Processes responsible for changing a magma's composition:

- Magmatic differentiation


 Separation of a melt from earlier formed crystals to form a different composition of magma


Assimilation

 Changing a magma's composition by the incorporation of foreign matter (surrounding rock bodies) into a magma

Magma mixing

- Involves two bodies of magma intruding one another
- Two chemically distinct magmas may produce a composition quite different from either original magma

Evolution of Magmas

- Partial melting and magma formation
 - Formation of basaltic magmas
 - Most originate from partial melting of ultramafic rock in the mantle
 - Basaltic magmas form at mid-ocean ridges by decompression melting or at subduction zones
 - As basaltic magmas migrate upward, confining pressure decreases which reduces the melting temp.
 - Large outpourings of basaltic magma are common at Earth's surface (CRB's)

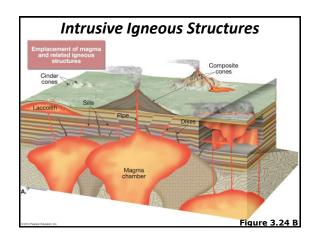
Evolution of Magmas

- Partial melting and magma formation
 - -Formation of intermediate magmas
 - Interactions between mantle-derived basaltic magmas and more silica-rich rocks in the crust generate magma of andesitic composition
 - Common at convergent plate boundaries
 - Andesitic magma may also evolve by magmatic differentiation

Evolution of Magmas

- Partial melting and magma formation
 - Formation of <u>felsic</u> magmas
 - Most likely form as the end product of crystallization of andesitic magma
 - Granitic magmas are higher in silica... therefore more viscous than others
 - Because of their viscosity, they lose their mobility before reaching the surface
 - Tend to produce large plutonic structures

Plutonic Igneous Activity

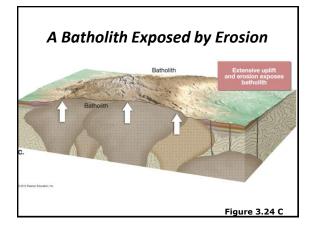

- Most magma is emplaced at depth
- An underground igneous body, once cooled and solidified, is called a pluton
- Classification of plutons:
 - Shape
 - <u>Tabular</u> (sheet-like)
 - Massive (bulb-like)
 - Orientation with respect to the host rock
 - Discordant cuts across sedimentary rock
 - <u>Concordant</u> parallel to sedimentary rock

Plutonic Igneous Activity

- Types of intrusive igneous features
 - Dike a tabular, discordant pluton
 - Sill a tabular, concordant pluton (e.g., Palisades Sill in New York)

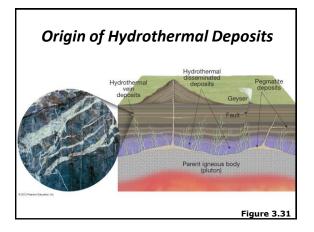
- Laccolith

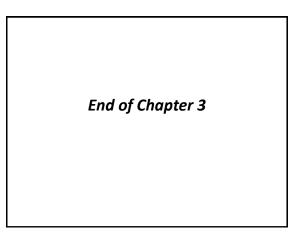
- Similar to a sill
- Lens or mushroom-shaped mass
- Arches overlying strata upward



Plutonic Igneous Activity

Types of intrusive igneous features


- Batholith


- Largest intrusive body
- Surface exposure of over 100 square kilometers (smaller bodies – 'stocks')
- Bulb-like shape
- Frequently form the cores of mountains

Mineral Resources and Igneous Processes

- Many important accumulations of metals are produced by igneous processes
- Igneous mineral resources can form from:
 - Magmatic segregation separation of heavy minerals in a magma chamber
 - Hydrothermal solutions Originate from hot, metal-rich fluids that are remnants of the latestage magmatic process

