Essentials of Geology, 11e

Volcanoes and Volcanic Hazards Chapter 4

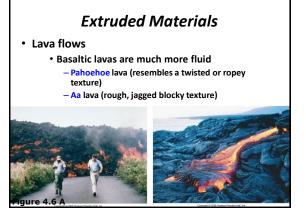
Instructor – Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College

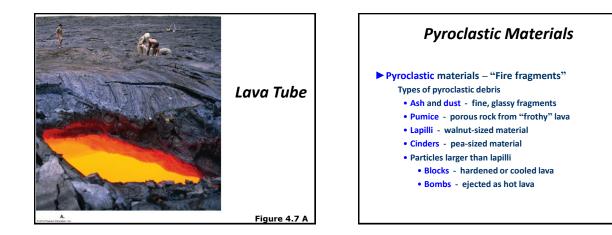
Jennifer Cole Northeastern University

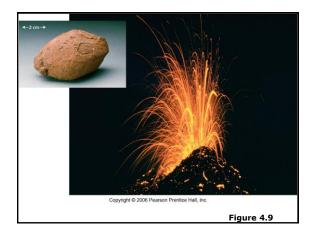
The Nature of Volcanic Eruptions

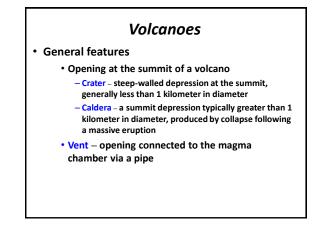
- Factors determining the "violence" or explosiveness of a volcanic eruption
 - Composition of the magma
 - Temperature of the magma
 - Dissolved gases in the magma
- The above three factors control the viscosity of a given magma, which in turn controls the nature of an eruption

The Nature of Volcanic Eruptions

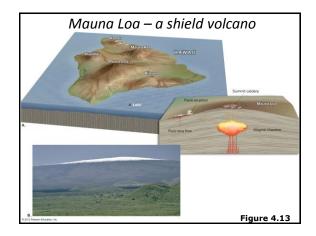

- Viscosity is a measure of a material's resistance to flow (e.g., higher viscosity materials flow with greater difficulty)
- 3 Factors affecting viscosity:
 - Temperature hotter magmas are less viscous
 - Composition silica (SiO₂) content
 - Higher silica content = higher viscosity
 - (e.g., felsic lava such as rhyolite)
 - Lower silica content = lower viscosity or more fluid-like behavior
 - (e.g., mafic lava such as basalt)


The Nature of Volcanic Eruptions


- 3 Factors affecting viscosity
 - Dissolved gases
 - Gas content affects magma mobility
 - Gases expand within a magma as it nears the
 - Earth's surface due to decreasing pressure
 - The violence of an eruption is related to how easily gases escape from magma

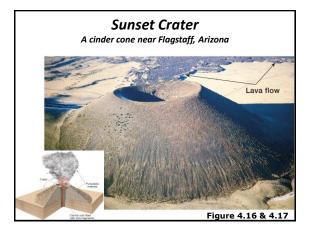

The Nature of Volcanic Eruptions

- Factors affecting viscosity
 - In summary-
 - Fluid basaltic lavas generally produce quiet eruptions
 - Highly viscous lavas (rhyolite or andesite) produce more explosive eruptions
- Dissolved Gases
 - One to six percent of a magma by weight
 - Mainly water vapor and carbon dioxide



Volcanoes

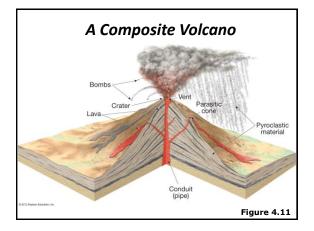
• 3 Types of volcanoes

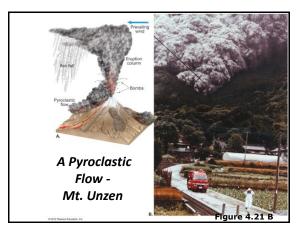

Shield volcano

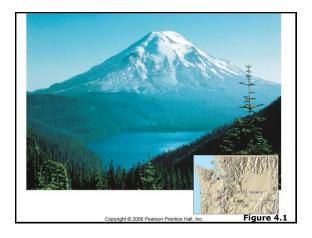
- Broad, slightly dome-shaped
- Composed primarily of basaltic lava
- Generally cover large areas
- Produced by mild eruptions of large volumes of lava
- Mauna Loa on Hawaii is a good example

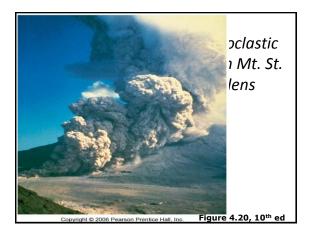
Volcanoes

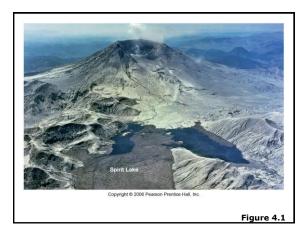
- Types of volcanoes
 - Cinder cone
 - Built from ejected lava (mainly cinder-sized) fragments
 - Steep slope angle
 - Rather small size
 - Frequently occur in groups



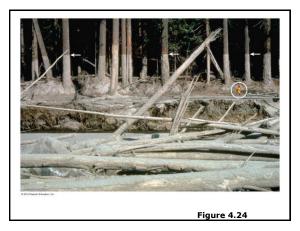

Volcanoes

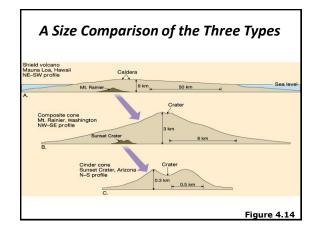

- Types of volcanoes
 - Composite cone (stratovolcano)
 - -Most are located adjacent to the Pacific Ocean (e.g., Fujiyama, Mount St. Helens)
 - -Large, classic-shaped volcano (thousands of feet high and several miles wide at base)
 - -Composed of interbedded lava flows and layers of pyroclastic debris

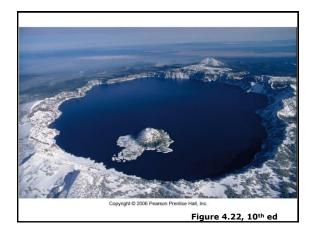

Volcanoes

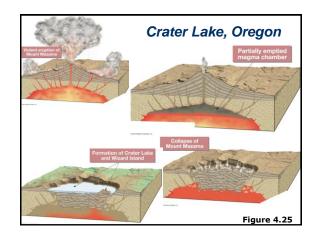

- Composite cones, continued
- -Most violent type of activity (e.g., Mt. Vesuvius)
 - -Often produce a pyroclastic flow
 - »Fiery pyroclastic flow made of hot gases infused with ash and other debris
 - » Move down the slopes of a volcano at speeds up to 200 km per hour
- -May produce a lahar, which is a volcanic mudflow

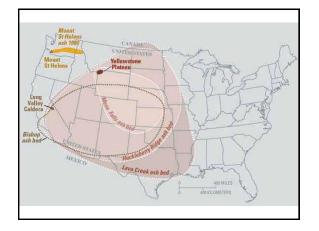






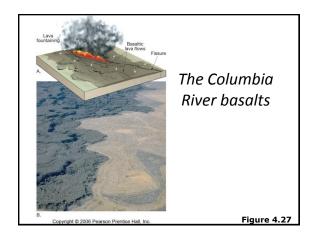


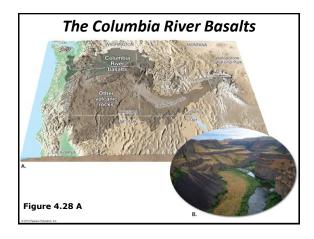




Other Volcanic Landforms

- Calderas
 - Steep-walled depressions at the summit
 - Size generally exceeds 1 kilometer in diameter
- Pyroclastic flows
 - Associated with felsic and intermediate magma
 - Consist of ash, pumice, and other fragmental debris
 - Material is propelled from the vent at a high speed

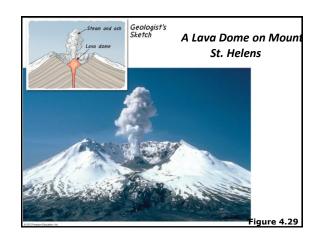



Other Volcanic Landforms

- Fissure eruptions and lava plateaus
 - Fluid basaltic lava extruded from crustal fractures called fissures
 - e.g., Columbia River Plateau

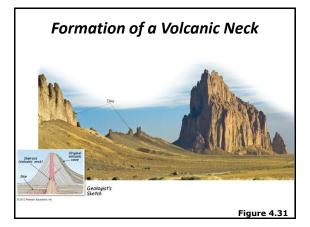
Lava Domes

- Bulbous mass of congealed lava
- Most are associated with explosive eruptions of gas-rich magma

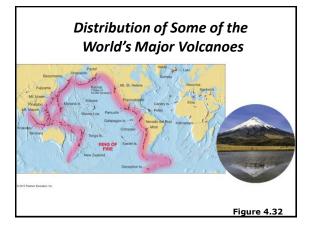

Other Volcanic Landforms

Lava domes

- Bulbous masses of congealed lava
- Most are associated with explosive eruptions of gas-rich magma


Volcanic pipes and necks

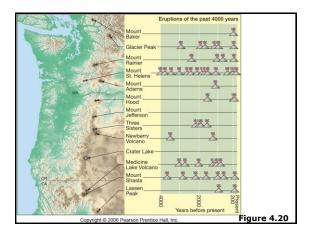
• Pipes are short conduits that connect a magma chamber to the surface


Other Volcanic Landforms

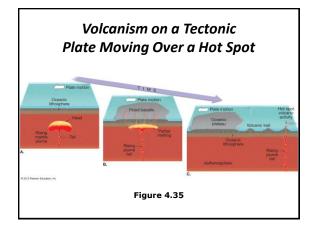
- Volcanic pipes and necks
 - Volcanic necks (e.g., Ship Rock, New Mexico) are resistant vents left standing after erosion has removed the volcanic cone
 - Pipes are short conduits that connect a magma chamber to the surface

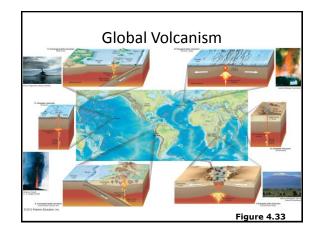
Plate Tectonics and Igneous Activity

- Global distribution of igneous activity is not random
 - · Most volcanoes are located within or near ocean basins
 - Basaltic rocks are common in both oceanic and continental settings, whereas granitic rocks are rarely found in the oceans
 - · Active volcanoes are often associated with plate boundaries


Plate Tectonics and Igneous Activity

- Igneous activity along plate margins
 - Spreading centers
 - · The greatest volume of volcanic rock is produced along the oceanic ridge system
 - · Mechanism of spreading-
 - » Lithosphere pulls apart
 - » Less pressure on underlying rocks
 - » Results in partial melting of mantle
 - » Large quantities of basaltic magma are produced


Plate Tectonics and Igneous Activity


- · Igneous activity along plate margins - Subduction zones
 - Occurs with deep oceanic trenches where descending plate partially melts

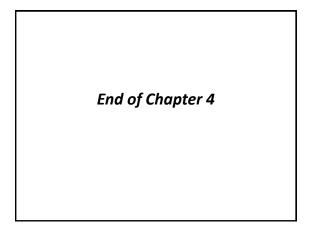

 - Magma slowly moves upward Rising magma can form either
 - » An island arc if in the ocean
 - » A volcanic arc if on a continental margin · Associated with the Pacific Ocean Basin
 - » Region around the margin is known as the Ring of Fire. Many explosive volcanoes.

Plate Tectonics and Igneous Activity Intraplate volcanism · Activity within a tectonic plate, associated with plumes of heat in the mantle · Forms localized volcanic regions in the overriding plate called a hot spot - Produces basaltic magma sources in oceanic crust (e.g., Hawaii and Iceland) - Produces granitic magma sources in continental crust (e.g., Yellowstone Park)

