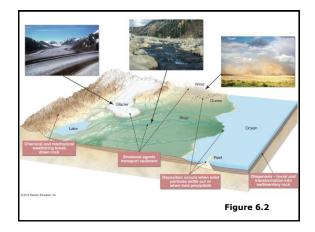

Essentials of Geology, 11e


Sedimentary Rocks Chapter 6

Instructor – Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer Cole Northeastern University

What is a Sedimentary Rock?

- Sedimentary rocks are products of mechanical and chemical weathering
- They account for about 5 percent (by volume) of Earth's outer 10 miles
- They contain evidence of past environments
 - Provide information about sediment transport (water, wind, ice)
 - Often contain fossils
 - Provide storage for groundwater

What is a Sedimentary Rock?

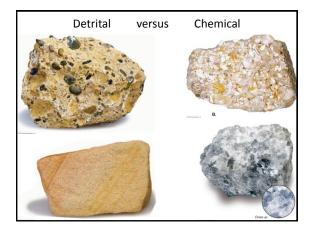
- Sedimentary rocks are important for economic considerations because they may contain:
 - Coal
 - Petroleum and natural gas
 - -Sources of iron, aluminum, and manganese

Turning Sediment into Rock

- Many changes occur to sediment after it is deposited.
- Diagenesis all of the chemical, physical, and biological changes that take place after sediments are deposited
 - Occurs within the upper few kilometers of Earth's crust

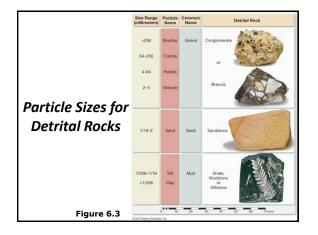
recrystallization or lithification: compaction & cementation

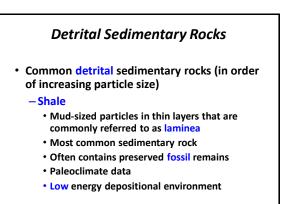
Turning Sediment into Rock

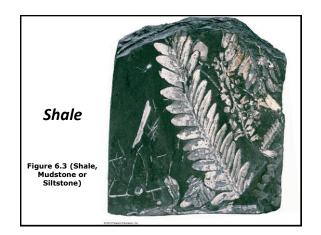

- Diagenesis
 - Includes
 - Recrystallization development of more stable minerals from less stable ones
 - Lithification unconsolidated sediments are transformed into solid sedimentary rock by
 - Compaction due to overlying pressure
 - Cementation by calcite, silica, and iron oxide

Types of Sedimentary Rocks

- Sediment originates from mechanical and/or chemical weathering
- Rock types are based on source of material:
- Detrital (transported)
 - Made up of discrete fragments and particles that are cemented and compacted together
 - Particle size

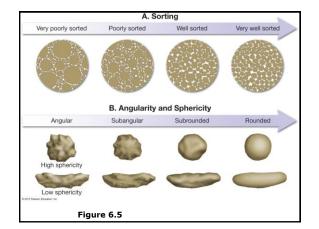

- Chemical (in solution)

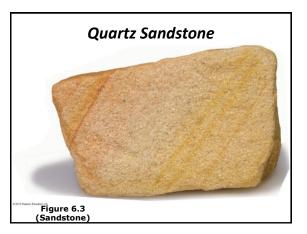

- · When dissolved substances are precipitated by inorganic or organic processes
- Mineral composition

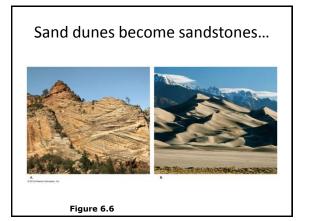


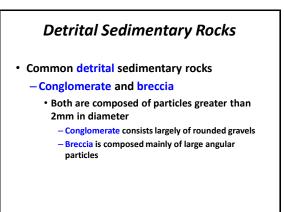
Detrital Sedimentary Rocks

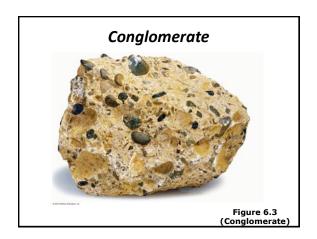
- The chief constituents of detrital rocks include cement and the following grains:
 - Clay minerals
- Remember
- Quartz
- Feldspars
- **Bowen's Reaction** Series!
- Micas
- Particle size is used to distinguish among the various types of detrital rocks (figure 6.3)






Detrital Sedimentary Rocks


- Sandstone

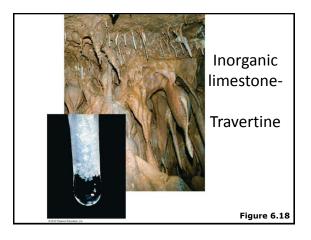

- Composed of sand-sized particles
- Forms in a variety of environments
- Sorting, shape, and composition of the grains can be used to interpret the rock's history "provenance"
- · Quartz is the predominant mineral
- Feels gritty fine to course sandpaper.

Chemical Sedimentary Rocks

- Consist of precipitated material that was once in solution OR was alive.
- Precipitation of material occurs in two ways
 - -Inorganic processes
 - Organic processes • biochemical origin

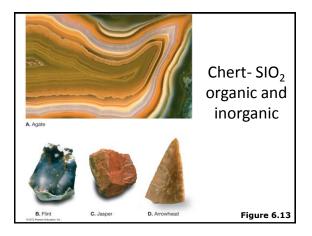
Chemical Sedimentary Rocks

Common chemical sedimentary rocks


- Limestone

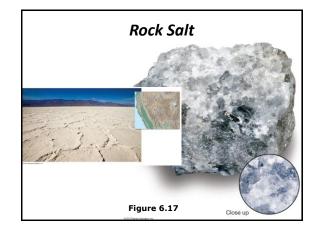
- Most abundant chemical rock
- Composed chiefly of the mineral calcite
- Marine <u>biochemical</u> limestones form as coral reefs, coquina (broken shells), and chalk (microscopic organisms)
- <u>Inorganic</u> limestones include travertine and oolitic limestone

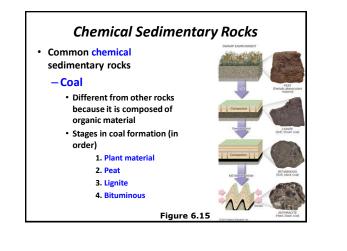
Chemical Sedimentary Rocks

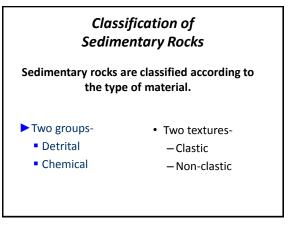

Common chemical sedimentary rocks

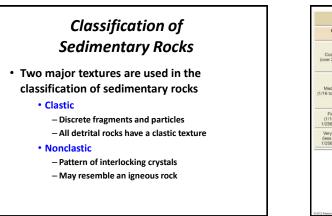
- Dolostone

• Typically formed secondarily from limestone (added Mg)


- Chert


- Made of microcrystalline quartz
- Varieties include flint and jasper (banded form is called agate)




Chemical Sedimentary Rocks

- Common chemical sedimentary rocks
 - Evaporites
 - Evaporation triggers deposition of chemical precipitates
 - Examples include rock salt (halite) and rock gypsum

Rock Name		Texture	Composition	Rock Name	Sediment Name	ClasticTexture (particle size)	
Crystalline Limestone Travertine		Nonclastic: Fine to coarse crystalline		Conglomerate	Gravel (Rounded particles)	致得	Coarse
				Breccia	Gravel (Angular particles)	法因	(over 2 mm)
Biochemical	Coquina	Clastic: Visible shells and shell fragments loosely cemented	Calcite, CaCO ₃	Sandstone	Sand (If abundant feldspar is present the rock		Medium (1/16 to 2 mm)
	Fossiliferous Limestone	Clastic: Various size shells and shell fragments cemented with calcite cement			is called Arkose)		Fine
	Chalk	Clastic: Microscopic shells and clay		Siltstone	Mud		(1/16 to 1/256 mm)
Chert (light colored Flint (dark colored		Nonclastic: Very fine crystalline	Quartz, SiO ₂	Shale or Mudstone	Mud		Very fine (less than 1/256 mm)
Rock Gypsum		Nonclastic: Fine to coarse crystalline	Gypsum CaSO ₄ •2H ₂ O				
Rock Salt		Nonclastic: Fine to coarse crystalline	Halite, NaCl				
Bituminous Coal		Nonclastic: Fine-grained organic matter	Altered plant fragments				

Sedimentary Environments

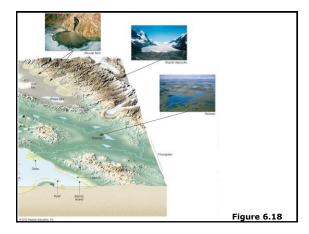
- A geographic setting where sediment is accumulating
- Determines the nature of the sediments that accumulate (grain size, grain shape, etc.)

Sedimentary Environments

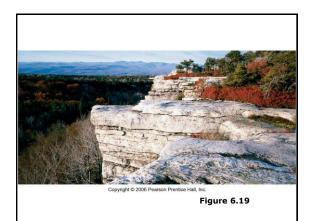
Types of sedimentary environments

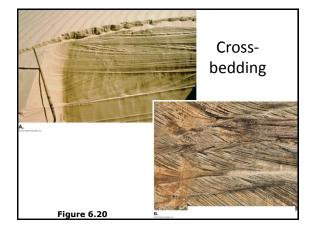
- Continental

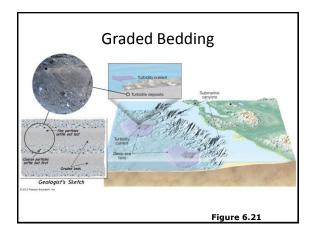
- Dominated by erosion and deposition associated with streams
- Glacial
- Wind (eolian)

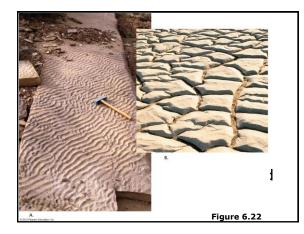

- Marine

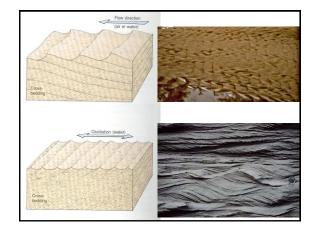
- Shallow (to about 200 meters)
- Deep (seaward of continental shelves)
- Ultra-fine particles, low energy


Sedimentary Environments

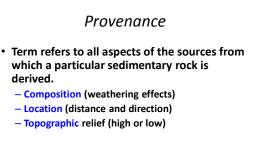

- Types of sedimentary environments
 - Transitional (shoreline)
 - Tidal flats moderate to low energy, waves, mud, and dirty limestones.
 - Lagoons quiet, mud and clay, fresh and salt water mix.
 - Deltas mouth of a fresh water river, moderate energy, sand to silt.


Sedimentary Structures Provide information useful in the interpretation of Earth's history Types of sedimentary structures Strata, or beds (most characteristic of sedimentary rocks). Bedding planes that separate strata. Cross-bedding historic change in wind or water direction.





Sedimentary Structures


- Types of sedimentary structures
 - Graded beds coarse below fine grains.
 - Ripple marks direction of wind or water as transporting agents.
 - Mud cracks paleoclimate data indicating periods of wet and dry conditions.
 - Fossils preserved hard parts, impressions, tracks, burrows,...

"This sedimentary rock was derived from a mountainous andesitic volcanic island are located 100 km east of the depositional area."

Provenance

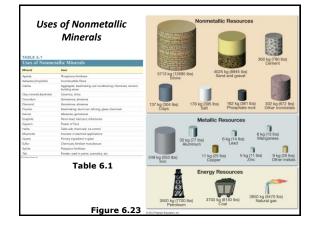
• Sorting

- Degree of similarity in particle size
- Well sorted to poorly sorted
- Transport agent wind, wave, stream
- Transport time short or long

Provenance

• Shape

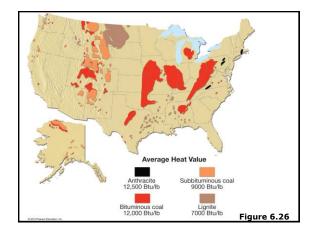
- Sharp or rounded edges transport agent (air, water, ice)
- Degree of rounding indicating distance traveled or time


Provenance

Composition

- Predominate minerals (% overall)
 Unstable minerals under attack
- Bowen's Reaction Series (Fig 3.20)
- Weathering is in the reverse order of crystallization
- *Substantial weathering and long transport lead to the gradual destruction of weaker – less stable minerals.
- *Silicate minerals weather in the order they initially crystallize.

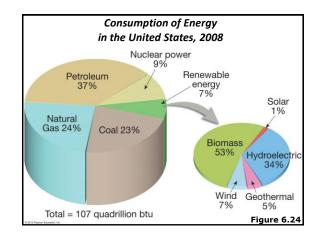
Nonmetallic Mineral Resources

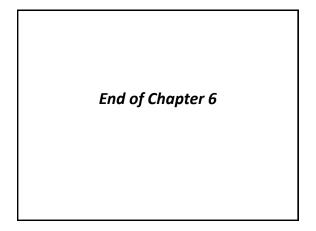

- Use of the word "mineral" is very broad.
- Two common groups
 - Building materials
 - Natural aggregate (crushed stone, sand, and
 - gravel) – Gypsum (plaster and wallboard)
 - Clay (tile, bricks, and cement)
 - Industrial minerals
 - Corundum
 - Garnet
 - Diamond

Energy Resources from Sedimentary Rocks

• Coal

- Formed mostly from plant material
 in swampy/bog with limited O₂
- Along with oil and natural gas, coal is commonly called a fossil fuel
- The major fuel used in power plants to generate electricity
- Potential environmental problems from mining and air pollution


Energy Resources from Sedimentary Rocks


• Oil and natural gas

- Derived from the remains of marine plants and animals
- Both are composed of various hydrocarbon compounds and found in similar environments
- Oil trap geologic environment that allows significant amounts of oil and gas to accumulate

Energy Resources from Sedimentary Rocks

- Oil and natural gas
 - Two basic conditions for an oil trap
 - Porous, permeable reservoir rock
 - Impermeable cap rock, such as shale
 - Cap rock keeps the mobile oil and gas from escaping at the surface

