Essentials of Geology, 11e

Metamorphism and Metamorphic Rocks Chapter 7

Instructor – Jennifer Barson Spokane Falls Community College Geology 101

Southwestern Illinois College Jennifer Cole Northeastern University

Stanley Hatfield

Don't take life for GRANITE!

SCHIST happens,

so always be GNEISS.

Metamorphism

- Metamorphism the transition of one rock into another by temperatures and/or pressures unlike those in which it formed
 - Leads to changes in the mineralogy, texture and often the chemical composition of rocks.
- Metamorphic rocks are produced from
 - Igneous rocks
 - Sedimentary rocks
 - Other metamorphic rocks

Metamorphism

- Metamorphism progresses incrementally from low-grade to high-grade
- During metamorphism the rock must remain essentially solid
- 3 Metamorphic settings (environments):
 - 1. Contact or thermal metamorphism driven by a rise in temperature within the host rock.

Metamorphism

- Metamorphic settings (environments):
 - 2. Hydrothermal metamorphism chemical alterations from hot, ion-rich water
 - 3. Regional metamorphism
 - Occurs during mountain building
 - Produces the greatest volume of metamorphic rock
 - Rocks usually display zones of contact and/or hydrothermal metamorphism

3 Agents of Metamorphism

1. Heat

- The most important agent
- Recrystallization results in new, stable minerals
- -Two sources of heat
 - Contact metamorphism heat from magma
 - An increase in temperature with depth due to the geothermal gradient

3 Agents of Metamorphism

- 2. Pressure (stress)
 - -Increases with depth
 - <u>Confining</u> pressure applies forces equally in all directions
 - Rocks may also be subjected to <u>differential</u> stress, which is unequal in different directions

Agents of Metamorphism

3. Chemically active fluids

- Mainly water with other volatile components
- Enhances migration of ions
- -Aids in recrystallization of existing minerals

-Sources of fluids:

- Pore spaces of sedimentary rocks
- Fractures in igneous rocks
- Hydrated minerals such as clays and micas

Agents of Metamorphism

- The importance of <u>parent rock-</u>
 - Most metamorphic rocks have the same overall chemical composition as the parent rock from which they formed
 - Mineral makeup determines, to a large extent, the degree to which each metamorphic agent will cause change

Metamorphic Textures

- Texture refers to the size, shape, and arrangement of grains within a rock
- Foliation any planar arrangement of mineral grains or structural features within a rock.
 - Ultimately driven by compressional stresses (differential pressure) the shorten rock units, causing mineral grains to develop alignment.

Metamorphic Textures

Foliation

- Examples of foliation
 - Parallel alignment of platy and/or elongated minerals
 - Parallel alignment of flattened mineral grains and pebbles
 - Compositional banding
 - Slaty cleavage where rocks can be easily split into thin, tabular sheets

Metamorphic Textures

- Foliation
 - Foliation can form in various ways including
 - Rotation of platy and/or elongated minerals.
 - Recrystallization of minerals in the direction of preferred orientation (perpendicular to direction of stress).
 - Changing the shape of *equidimensional* grains into elongated shapes that are aligned or segregated.

Metamorphic Textures

- Other metamorphic textures
 - Those metamorphic rocks that lack foliation are referred to as nonfoliated
 - Develop in environments where deformation is minimal.
 - Contact or hydrothermal are common
 - Typically composed of minerals that exhibit equidimensional (similar size and shape) crystals.

Metamorphic Textures

- Other metamorphic textures
 - Porphyroblastic textures
 - Large grains, called porphyroblasts, are surrounded by a fine-grained matrix of other minerals
 - Porphyroblasts are typically garnet, staurolite, and/or andalusite

Common Metamorphic Rocks

- Foliated rocks
 - Slate
 - Very fine grained
 - Excellent rock cleavage
 - Most often generated from low-grade metamorphism of shale, mudstone, or siltstone
 - Dominant mineral is clay
 - Dense, with high pitch resonance

Common Metamorphic Rocks

- Foliated rocks
 - Phyllite
 - Gradation in the degree of metamorphism between slate and schist
 - Platy minerals not large enough to be identified with the unaided eye
 - Glossy sheen and wavy surfaces
 - Exhibits rock cleavage
 - Composed mainly of fine crystals of muscovite and/or chlorite

Common Metamorphic Rocks

- Foliated rocks
 - Schist
 - Medium to coarse grained
 - Platy minerals predominate
 - Commonly include the micas
 - The term *schist* describes the texture
 - To indicate composition, mineral names are used (such as mica schist)

Common Metamorphic Rocks

- Foliated rocks
 - Gneiss
 - Medium to coarse grained
 - Banded appearance
 - High-grade metamorphism
 - Often composed of white or light-colored feldspar-rich layers with bands of dark ferromagnesian minerals

Common Metamorphic Rocks

- Nonfoliated rocks
 - Marble
 - Coarse, crystalline
 - Parent rock was limestone or dolostone
 - Composed essentially of calcite or dolomite crystals
 - Used as a decorative and monument stone
 - Exhibits a variety of colors
 - Equidimensional grains

Common Metamorphic Rocks

Nonfoliated rocks

-Quartzite

- Formed from a parent rock of quartz-rich sandstone
- Quartz grains are fused together – Cement and previous quarts grains recrystallized.
- Exhibits a variety of colors
- Equidimensional grains

Metamorphic Environments

- Contact or thermal metamorphism
 - Occurs due to a rise in temperature when magma invades a host rock
 - A zone of alteration called an aureole forms in the rock surrounding the magma
 - Most easily recognized when it occurs at the surface, or in a near-surface environment

Metamorphic Environments

- Hydrothermal metamorphism
 - Chemical alteration caused when hot, ionrich fluids, called hydrothermal solutions (aka...chemically active fluids), circulate through fissures and cracks that develop in rock
 - Most widespread along the axis of the mid-ocean ridge system

Metamorphic Environments

- Regional metamorphism
 - Produces the greatest quantity of metamorphic rock
 - -Associated with mountain building
 - Takes place at considerable depths
 - Comprises an extensive area
 - May include all types of metamorphic environments

Metamorphic Environments

- Other metamorphic environments
 - -Burial metamorphism
 - Associated with thick sedimentary strata
 - Required depth varies from one location to another depending on the prevailing geothermal gradient.
 - Metamorphism along fault zones
 - Occurs at depth and high temperatures
 - Pre-existing minerals deform by ductile flow
 - Rocks called mylonite

Brittle and Ductile Metamorphism

Metamorphic Environments

- · Other metamorphic environments
 - Impact metamorphism
 - Occurs when high speed projectiles called meteorites strike Earth's surface
 - Products are called impactites
 - Fused fragmented rock plus glass-rich ejecta
 - Iridium may be common element.

Metamorphic Zones

- Variations in mineralogy and textures of metamorphic rocks are related to-
 - Variations in the <u>degree of metamorphism</u>.
- Index minerals and metamorphic grade
 - Changes in mineralogy occur from regions of low-grade to high-grade metamorphism.
 - Certain minerals, called index minerals, are good indicators of the metamorphic conditions in which they form.

Metamorphic Zones

Index minerals and

metamorphic grade

- Migmatites
 Highest grades of metamorphism th
 - metamorphism that is transitional to igneous rocks • Contain light bands of igneous components alo
 - Contain light bands of igneous components along with areas of unmelted* metamorphic rock. *Think Bowen's!

Figure 7.23

End of Chapter 7