# Essentials of Geology, 11e

# **Glaciers and Glaciation** Chapter 11

Instructor – Jennifer Barson Spokane Falls Community College Geology 101

Stanley Hatfield Southwestern Illinois

Jennifer Cole Northeastern Univers

#### Glaciers

- · Glaciers are parts of two basic cycles
  - Hydrologic cycle
  - Rock cycle
- Glacier a thick mass of ice that orig-inates on land from the accumulation, compaction, and recrystallization of snow

### Glaciers

- Types of glaciers
  - Valley (alpine) glaciers
    - Exist in mountainous areas
    - Flows down a valley from an accumulation center at its head
  - Ice sheets (continental)
    - Exist on a larger scale than valley glaciers
    - Two major ice sheets on Earth are over Greenland and Antarctica
    - Ice flows out in all directions from one or more snow accumulation centers

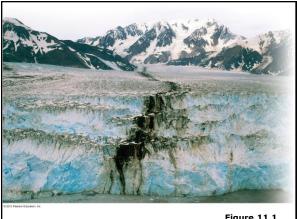
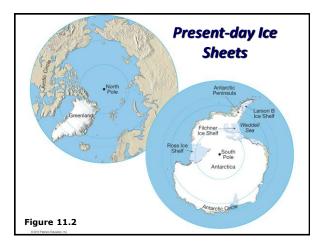
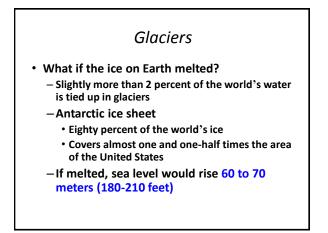
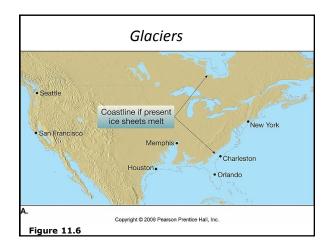






Figure 11



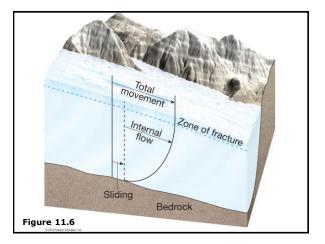


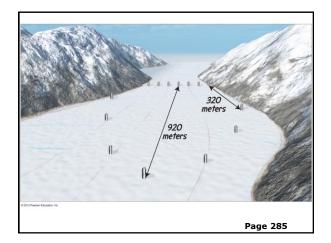


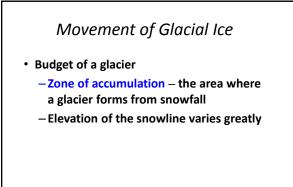
#### Formation of Glacial Ice

- Glaciers form in areas where more snow falls in winter than melts during the summer
- Steps in the formation of glacial ice
  - Air infiltrates snow
  - Snowflakes become smaller, thicker, and more spherical
  - Air is forced out

## Formation of Glacial Ice


- Steps in the formation of glacial ice
  - Snow is recrystallized into a much denser mass of small grains called firn
  - Once the thickness of the ice and snow exceeds 50 meters, firn fuses into a solid mass of interlocking ice crystals – glacial ice


# Movement of Glacial Ice

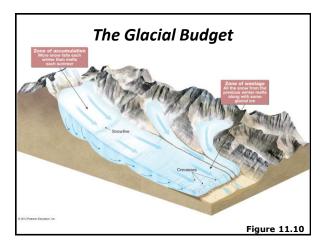

- Movement is referred to as flow
  - -Two basic types
    - Plastic flow
      - Occurs within the ice
      - Under pressure, ice behaves as a plastic material
    - Basal slip
      - Entire ice mass slipping along the ground
      - Most glaciers are thought to move by this process

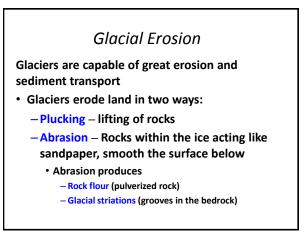
### Movement of Glacial Ice

- Zone of fracture
  - -Occurs in the uppermost 50 meters
  - Tension causes crevasses to form in brittle ice
- Rates of glacial movement:
  - Average velocities vary considerably from one glacier to another
  - Some glaciers exhibit extremely rapid movements called surges

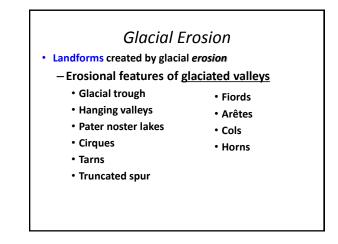


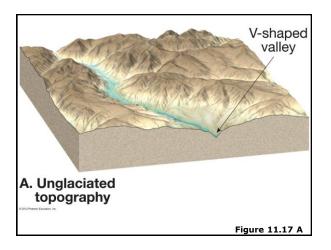


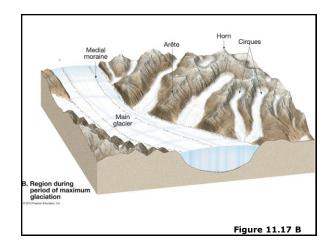


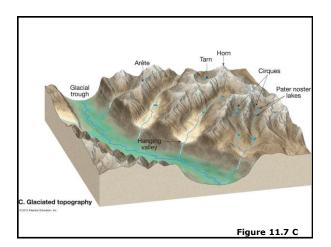


# Movement of Glacial Ice

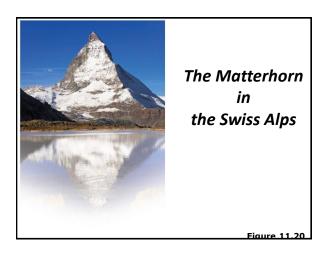
- Budget of a glacier
  - -Zone of wastage the area where there is a net loss to the glacier due to
    - Melting warm temperatures
    - Calving the breaking off of large pieces of ice (icebergs where the glacier has reached a body of water)

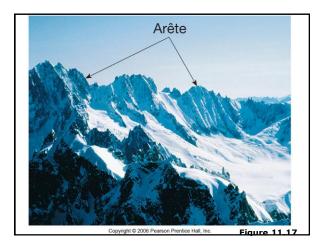

### Movement of Glacial Ice

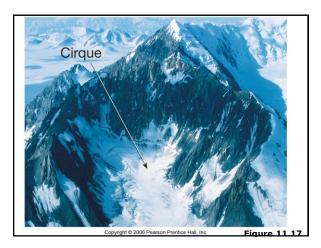

- Budget of a glacier
  - Balance, or lack of balance, between accumulation at the upper end of the glacier, and loss at the lower end is referred to as the glacial budget
    - If accumulation exceeds loss (ablation), the glacial front <u>advances</u>
    - If ablation increases and/or accumulation decreases, the ice front will <u>retreat</u>

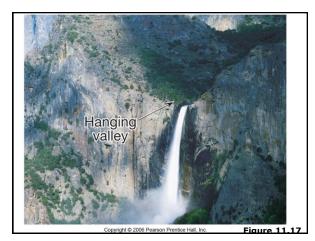















# Glacial Deposits

• Glacial drift – refers to all sediments deposited from glacial origin

#### • Types of glacial drift

the surface

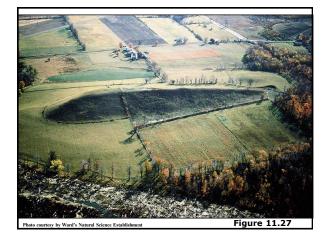
- Till material that is deposited directly by the ice
  Stratified drift sediments laid down by glacial
- meltwater – Glacial erratics – boulders of rock different than the bedrock that are found in till or lying free on



#### **Glacial Deposits**

- Landforms made of till
  - Moraines
    - Layers or ridges of till
  - Moraines produced by alpine glaciers
    - Lateral moraine
    - Medial moraine
    - Other types of moraines
      - End moraine terminal or recessional
      - Ground moraine






### Glacial Deposits

• Landforms made of *till* 

#### - **Drumlins**

- Smooth, elongated, parallel hills
- Steep side faces the direction from which the ice advanced
- Occur in clusters called drumlin fields
- Formation not fully understood



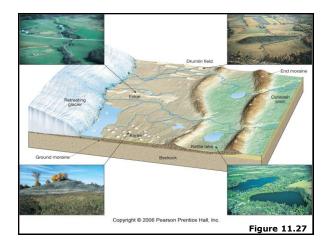
# Glacial Deposits

- Landforms made of stratified drift
  - -Outwash plains (with ice sheets) and valley trains (when in a valley)
    - Broad ramp-like surface composed of stratified drift deposited by meltwater leaving a glacier
    - Located adjacent to the downstream edge of most end moraines
    - Often pockmarked with depressions called kettles (lakes)

# **Glacial Deposits**

• Landforms made of *stratified drift* 

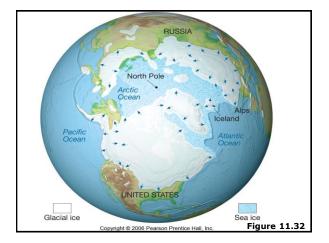
#### -Ice-contact deposits


- Deposited by meltwater flowing over, within, and at the base of motionless ice
- Features include
  - Kames
  - Kame terraces
  - Eskers





#### **Glacial Erosion**

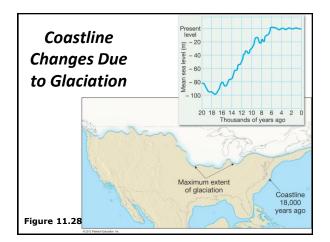

- Landforms created by erosion or deposition from an active ice sheet
  - Drumlin
  - End, terminal, recessional moraine
  - Kettle lake
  - Esker
  - Roche moutonnee
  - Outwash plains and ground moraine
  - Kames



## Glaciers of the Past

• Ice Age

- Four major stages recognized in North America
  - Nebraskan
  - Kansan
  - Illinoian
  - Wisconsinan
- Ice covered 30% of Earth's land area

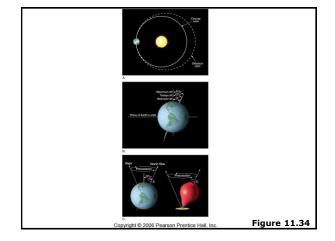



### Glaciers of the Past

- Ice Age
  - -The most recent Ice Age began between two million and three million years ago
  - -Most of the major glacial stages occurred during a division of geologic time called the Pleistocene epoch
  - -~ 20 glacial/interglacial cycles

#### Glaciers of the Past

- Indirect effects of Ice Age glaciers
  - Forces migration of animals and plants
  - Changes in stream courses
  - -Rebounding upward of the crust in former centers of ice accumulation
  - -Worldwide change in sea level
  - -Climatic changes






- Some possible causes of glaciation
  - Plate tectonics
    - · Continents were arranged differently in the past
    - Changes in oceanic circulation
  - -Variations in Earth's orbit
    - The Milankovitch hypothesis (or theory)

# Causes of Glaciation

- Some possible causes of glaciation - Milankovitch hypothesis
  - - Shape (eccentricity) of Earth's orbit varies
    - Angle of Earth's axis (obliquity) changes
    - Earth's axis wobbles (precession)
  - · Changes in climate over the past several hundred thousand years are closely associated with variations in the geometry of Earth's orbit
  - -Other factors may also be involved

