Essentials of Geology, 11e

Geologic Time Chapter 18

Instructor – Jennifer Barson Spokane Falls Community College Geology 101 Stanley Hatfield Southwestern Illinois College Jennifer Cole Northeastern University

Determining Geological Ages

- Relative age dates placing rocks and events in their proper sequence of formation.
- Numerical dates specifying the actual number of years that have passed since an event occurred (known as absolute age dating).

Principles of Relative Dating

- Law of superposition
 - Originally developed by Nicolaus Steno in 1669
 - In an undeformed sequence of sedimentary rocks (or layered igneous rocks), the oldest rocks are on the bottom.

Principles of Relative Dating

- Principle of original horizontality
 - Layers of sediment are generally deposited in a horizontal position.
 - Rock layers that are flat have not been disturbed.
- Principle of cross-cutting relationships
 - Younger features cut across older features (faults, dikes, veins).

Principles of Relative Dating

• Inclusions

- An inclusion is a piece of rock that is enclosed within another rock
- Rock containing the inclusion is younger

Unconformity

 An unconformity is a break in the rock record produced by erosion and/or nondeposition of rock units

Principles of Relative Dating

- Unconformity
 - Types of unconformities
 - Angular unconformity tilted rocks are overlain by flat-lying rocks
 - Disconformity strata on either side of the unconformity are parallel
 - Nonconformity metamorphic or igneous rocks in contact with sedimentary strata

Fossils: Evidence of Past Life

- Fossil the remains or traces of prehistoric life
- Important time indicators
- Correlate relative ages of rocks
- Types of fossils
 - The remains of relatively recent organisms teeth, bones, etc.
 - Entire animals, flesh include
 - Given enough time, remains may be petrified (literally "turned into stone")

Fossils: Evidence of Past Life

- Types of fossils
 - Molds and casts
 - Carbonization
 - Others
 - Tracks
 - Burrows
 - Coprolites (fossil dung)
 - Gastroliths (polished stomach stones)

Fossils: Evidence of Past Life

- Conditions favoring preservation
 - Rapid burial
 - Possession of hard parts
- Fossils are more abundant in shales.
- Fossils are better preserved in low-energy environments.

Fossils: Evidence of Past Life

- Correlation of rock layers
 - Matching of rocks of similar ages in different regions is known as correlation
 - Correlation often relies upon fossils
 - William Smith (late1700s-early 1800s) noted that sedimentary strata in widely separated areas could be identified and correlated by their distinctive fossil content

Fossils: Evidence of Past Life

- Correlation of rock layers
 - Correlation often relies upon fossils
 Principle of fossil (faunal) succession fossil organisms succeed one another in a definite and determinable order, and therefore any time period can be recognized by its fossil content

-Index fossils

- Widespread geographically
- Limited to short span of geologic time

Using Radioactivity in Dating

- Reviewing basic atomic structure
 - Atomic number
 - An element's identifying number
 - Equal to the number of protons in the atom's nucleus

- Mass number

• Sum of the number of protons and neutrons in an atom's nucleus

Using Radioactivity in Dating

Reviewing basic atomic structure

-Isotope

- Variant of the same parent atom
- Differs in the number of neutrons
- Results in a different mass number than the parent atom

Using Radioactivity in Dating

- Radioactivity
 - Spontaneous changes (decay) in the structure of atomic nuclei
 - Types of radioactive decay 3 common

- Alpha emission

- Emission of 2 protons and 2 neutrons (an alpha particle)
- Mass number is reduced by 4 and the atomic number is lowered by 2

Using Radioactivity in Dating

• Types of radioactive decay – 3 common

– Beta emission

- An electron (beta particle) is ejected from the nucleus
- Mass number remains unchanged and the atomic number increases by 1

- Electron capture

- An electron is captured by the nucleus
- The electron combines with a proton to form a neutron
- Mass number remains unchanged and the atomic number decreases by 1

Using Radioactivity in Dating

- Radioactive parent Uranium-238
 - Atomic # 92
 - Mass # 238
- Decays by emitting 8 alpha particles and 6 beta particles
- Stable daughter product Lead-206
 - Atomic # 82
 - Mass # 206

Using Radioactivity in Dating

- Radiometric dating
 - Principle of radioactive dating
 - The percentage of radioactive atoms that decay during one half-life is always the same (50 percent)
 - However, the actual number of atoms that decay continually decreases
 - <u>Comparing the ratio of parent to daughter</u> <u>yields the age of the sample</u>

Using Radioactivity in Dating

- Radiometric dating
 - Useful radioactive isotopes for providing radiometric ages
 - Rubidium-87
 - Thorium-232
 - Two isotopes of uranium
 - Potassium-40

Radioactive Isotopes Frequently Used in Radiometric Dating		
Radioactive Parent	Stable Daughter Product	Currently Accepted Half-Life Values
Uranium-238	Lead-206	4.5 billion years
Uranium-235	Lead-207	713 million years
Thorium-232	Lead-208	14.1 billion years
Rubidium-87	Strontium-87	47.0 billion years
Potassium-40	Argon-40	1.3 billion years

Using Radioactivity in Dating

- Radiometric dating
 - Sources of error
 - A closed system is required
 - To avoid potential problems, only fresh,
 - unweathered rock samples should be used – Minerals may weather or recrystallize.

Using Radioactivity in Dating

- Dating with carbon-14 (radiocarbon dating):
 - Half-life of only 5730 years
 - Used to date very recent events
 - Carbon-14 is produced in the upper atmosphere from nitrogen-14
 - Useful tool for anthropologists, archeologists, and geologists who study very recent Earth history

Using Radioactivity in Dating

- Importance of radiometric dating
 - Radiometric dating is a complex procedure that requires precise measurement
 - Rocks from several localities have been dated at more than 3 billion years
 - Confirms the idea that geologic time is immense

Geologic Time Scale

- The *geologic time scale* a "calendar" of Earth history
 - Subdivides geologic history into units
 - Originally created using relative dates
- Numerical dates were added long after the time scale had first been established using relative dating techniques.

Geologic Time Scale

- Precambrian time
 - Nearly 4 billion years prior to the Cambrian period
 - Not divided into smaller time units because the events of Precambrian history are not known in enough detail
 - First abundant fossil evidence does not appear until the beginning of the Cambrian

Geologic Time Scale

- Difficulties in dating the geologic time scale using dating methods:
 - Not all rocks can be dated by radiometric methods
 - Grains comprising detrital sedimentary rocks are not the same age as the rock in which they formed.
 - The age of a particular mineral in a metamorphic rock may not necessarily represent the time when the rock formed.

Geologic Time Scale

- Difficulties in dating the geologic time scale using dating methods:
 - Datable materials (such as volcanic *ash* beds and igneous intrusions) are often used to <u>bracket</u> various episodes in Earth history and arrive at ages.

