Introduction to Environmental Geology, 5e

Chapter 4 Ecology and Geology

Jennifer Barson – Spokane Falls Community College

Chapter Four: Overview

- Linkages between geology with ecology and relationships with biodiversity
- Factors that increase or decrease biodiversity
- Human domination of ecosystems and reducing the human footprint
- Ecological restoration and processes

Case History: Endangered Trout

- A study to evaluate the steelhead habitat in the Santa Monica Mountains near Los Angeles
- Steelhead trout are born in mountain streams and travel to the ocean, enjoy gravel-laden streams and low summer flow
- The eggs hatch in the gravel of the stream
- Groundwater emerges to the surface as seeps and springs along faults
- The geology (rock types and structures) and groundwater are important in understanding fish habitat.

Fish Habitat: It's About Geology

Ecology and Geology Linkage

Ecology-

The study of relationships between living things and their environments; the study of control factors over the distribution, abundance, and health conditions of living things.

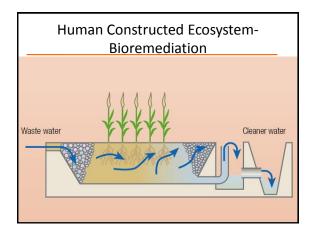
Environmental Geology

The study of geological processes and their effects on the environment.

What are some examples of linkage?

Fundamental Ecology Terms

- Species: A group of individuals capable of interbreeding
- **Population:** A group of individuals of the same species living in the same area
- Community: A group of the populations of different species living in the same area
- · Biota: All organisms living in an area or a region
- **Biosphere:** The part of Earth where organisms exist and function


Fundamental Ecology Terms

- Habitat: where a particular species lives
- Niche: how a species makes a living; its role in the ecosystem
- Indigenous species: found in the area where they evolved
- Exotic species: brought into an area or region by humans for a variety of purposes or as accidentals
- Invasive species: exotic species compete with indigenous species and may displace them

<text>

Types of Ecosystem

- Natural Indigenous: Ecosystem as the result of completely natural evolutional processes, rarely exist on land
- Human modified: The one modified by human use and interest, almost all the major ecosystems
- Human constructed: Man-made ecosystem for many different purposes at many sites, such as ponds, canals, wastewater treatment pools

Natural Service Functions of Ecosystems

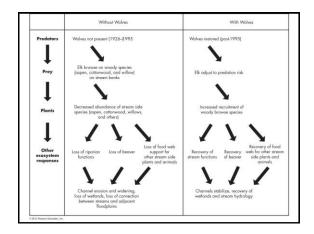
- Processes responsible for producing clean air, water, and living matter
- Direct functions:
 - Cycle of chemical elements (CO₂, O₂, CH₄)
 - Flow of energy and nutrients
 - Removal of pollutants

Buffering functions: providing protection from natural hazards – wetlands against coastal erosion and flooding

Biodiversity

Biodiversity- The number or abundance of species in an ecosystem or ecological community.

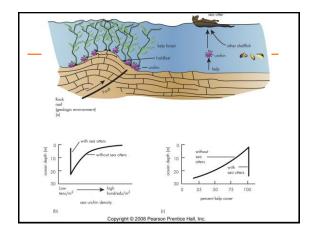
- Species richness: The number of species
- Species evenness: Relative proportion of species
- Species dominance: One of multiple species more common than others
- Keystone species: Exerting a stronger community effect disproportionate to their abundance


Geology and Biodiversity

- <u>Geology</u> affects the overall environmental conditions of an ecosystem
 - Changes in topography (e.g., mountain building and slope movement)
 - Plate tectonics and ecosystem barrier (e.g., North America and Europe tree diversity vs. mountain range distribution)
 - Occurrence of major natural disasters (volcanic eruptions, earthquakes and tsunamis, floods)
 - Changes in climate: Ice age, glaciation, and global warming

Keystone Species – ex: Wolves

- Keystone species: Species exert a strong community effects disproportionate to their abundance
- Case study: Wolf, elk and mountain stream system in the Yellowstone National Park
 - 1960s–mid-1990s: Elk overgrazed the riparian vegetation, affected the stream ecosystem
 - Late 1990s: Reintroduced wolves that hunted elks and promoted the regrowth of riparian vegetation, water quality, and stream ecosystem



Keystone Species - Otters

- Sea otters, urchins, and kelp
- Kelp forests: Three parts root-like holdfast, stem (stipe), and blades (leaves)
- Holdfast attached to boulders or the rocky bottom, part of the active geological environment
- · Urchins fed on the holdfast of kelp
- · Sea otters fed on urchins, kelp forests restored

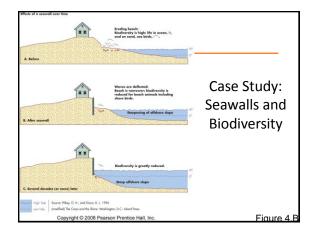
Factors To Increase Biodiversity

• Highly modified biologically productive environment with diverse habitat and niches

- Favored geological environment
 - Moderate amount of disturbance hazards creating or renewing habitats
- Harsh environments for certain unique specialized species, increasing biodiversity at regional scale
- Relatively constant environmental conditions, such as T, P, precipitation, and elevation
- Evolutionary capabilities

Factors To Reduce Biodiversity

- Extreme geological environment
 - Extreme disturbances damage habitats
 - Limit the number of habitats and ecological niches at a local scale
 - Pollution and other stresses restricting the flow of energy and nutrients
- Fragmentation of ecosystems by land use transformation
- Intrusion of invasive exotic species
- Habitat simplification (engineering structure) or migration barriers


Human Domination

Human activities exerting dominant community Effects (both locally and regionally):

- Dominate almost all ecosystems on Earth
- Massive land use transformation urban, agriculture, recreation and industry development
- Global climate changes
- Changes in biogeochemical cycles O, CO₂, CH₄, energy, and nutrients
- Most rapid extinction of many species during the last 2000 years

Case Study: Seawalls & Biodiversity

- <u>Seawall</u>: structures made of concrete, large boulders, or wood parallel to the shore with the objective of stopping coastal erosion
 - Beach space narrowed
 - Gradient increase of offshore slope
 - Waves (and their energy) are reflected
 - Fewer animals in the sand, fewer insects, fewer birds to feed and rest on the beach
 - Biodiversity reduced

The Golden Rule of the Environment: All About Timing...Human vs. Earth

- Geological processes on Earth time scale
- Human activities and expectations on human time scale
- Need to operate with an appropriate environmental ethic
- We need to achieve a more compatible relationship with the Earth
- Disrespect and disregard resulting environmental degradation

Reduce the Human Footprint

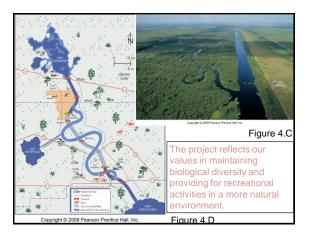
- Total footprint: The product of the footprint per person times the total number of persons
- Human population reduction
- More efficient use of resources
- · Better management of our waste
- Better understanding of ecosystems
- The importance of human-dominated ecosystems and other types of ecosystems "...sustaining Earth systems that we depend on for our health and well-being."

Ecological Restoration

The process of altering a site or area with the objective of reestablishing indigenous, historical ecosystems.

Potential restoration projects:

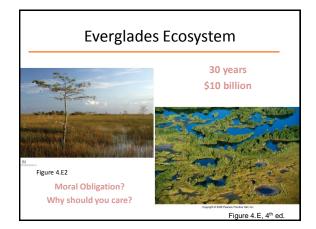
- River restoration
- Dam removal
- Floodplain restoration
- Mining remediation...etc.


Change a degraded ecosystem so that it resembles a less human-disturbed ecosystem and contains the structure, function, diversity, and processes of the desired ecosystem.

Ecological Restoration -Kissimmee River

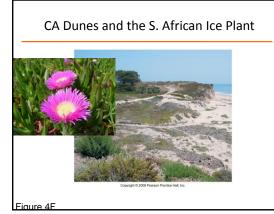
The process of altering a site or area to reestablish indigenous historical ecosystems.


- Prior to 1940, wide floodplain with diverse wetland plants, wading birds, waterfowl, fish, and other wildlife
- 1942–1971: Two-thirds of the floodplain drained, degraded ecosystem functions and reduction of birds and fish population
- 1992: Restoration project authorized by the Congress -12 km straight channel restored to a more natural meander



Everglades Ecological Restoration

- Since 1900, urban development, much of the Everglades drained
- One of the most valuable wetland ecosystem
 - 11,000 species of plants
 - 100s species of birds, fish, marine mammals
 - 70 threatened or endangered species
- Multi-level partnership restoration project
- Reduce pollution, remove invasive exotic species, and apply the precautionary principle
- Future plans- control human population, development, and access


• Science: Restoration goals and endpoints

Restoration Process and Procedure

- Steps and Procedures in Planning and Initiating an Ecological Restoration Project ABLE 4.1
- 1. Develop an ecological description of the area to be restored.
- 2. Provide a clear understanding of the need for the restoration
- 3. Define the objectives and goals of the project.
- 4. Specifically state the procedures that will be used to achieve the restorati
- 5. Clearly know the reference ecosystem that the restoration is attempting to reach.
- 6. Determine how the restored ecosystem will be self-sustaining; that is, provide for flow of energy and cycling of chemicals to ensure long-term self-maintenance of the restored ecosystem and stable linkages to other ecosystems.
- 7. State the standards of performance during restoration and monitoring following completion.
- . Work with all people interested in the project (stakeholders) from initiation through completion and postproject
- Examine what the potential consequences of the project are likely to be; that is, apply the principle of environmental unity, that everything affects everything else and anticipate what primary, secondary, and tertiary effects may be.
- d after Society for Ecological Restoration, 2004. The SER International Primer on Ecological Restoration, www.SER.org.

Biological Engineering in Ecologic Restoration

- Using vegetation in engineering projects to achieve specific ecological goals - i.e., plants to clean pollutants in wetlands
- Designing and constructing modified ecosystems
- · Modifying functions of ecosystems
- Planting or restoring native species
- Restricting and removing invasive species
- Restoring hydrologic conditions
- Removing accumulated waste

Critical Thinking and Applied Questions

- An ecosystem consists of both living community and its nonliving environment. Is one component more important?
- Based upon the linkage between ecology and geology, what is the importance of interdisciplinary collaborations in ecological restoration?
- What are the critical ecological challenges in your area?
- Are there any positive impact of land transformation on your local ecosystems?