Introduction to Environmental Geology, 5e

Chapter 6 Earthauakes

Jennifer Barson – Spokane Falls Community College

Chapter 6: Overview

- Understand earthquakes, faulting, and estimation of magnitude
- Know earthquake types, seismic risk, and major effects of earthquakes
- Understand earthquake cycles and methods of prediction
- Understand process of hazard reduction and perceived risk to humans

Case History: Earthquake

- On January 12, 2010, a magnitude 7.0 earthquake struck Haiti and killed about 300,000 people
- A magnitude 6.3 earthquake struck the midlevel town of L'Aqila in 2009, many of the buildings collapsed, killing about 300 people.
- In Chili (February 27, 2010), a magnitude 8.8 earthquake, about 500 times as strong as the Haiti earthquake, killed about 800 people
- Buildings are not designed to withstand shaking or are built improperly, causing far more deaths

Earthquakes

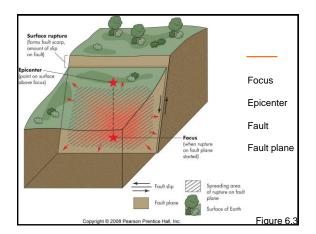
- Violent ground-shaking phenomenon by the sudden release of strain energy stored in rocks
- One of the most catastrophic and devastating hazards
- Globally, most earthquakes are concentrated along plate boundaries
- USGS estimated about 1 million quakes annually
- Millions of people killed and billions of dollars in damage by catastrophic earthquakes

	-	or Earthquak		U.S.
TABL		lected Major Earthquakes in the Ur	Damage (millions of dollars)	Number of Death
181	1-1812	New Madrid, Missouri	Unknown	Unknown
188	6	Charleston, South Carolina	23	60
190	6	San Francisco, California	524	700
192	5	Santa Barbara, California	8	13
193	3	Long Beach, California	40	115
194	0	Imperial Valley, California	6	9
195	2	Kern County, California	60	14
195	9	Hebgen Lake, Montana (damage to timber and roads)	11	28
196	4	Alaska and U.S. West Coast (includes tsunami damage from earthquake near Anchorage)	500	131
196	5	Puget Sound, Washington	13	7
197	1	San Fernando, California	553	65
198	3	Coalinga, California	31	0
198	3	Central Idaho	15	2
198	7	Whittier, California	358	8
198	9	Loma Prieta (San Francisco), California	5,000	62
199	2	Landers, California	271	1
199	4	Northridge, California	40,000	\$7
200	1	Seattle, Washington	2,000	1
200	2	South-central Alaska	(sparsely populated area)	0

Causes for Earthquakes

- Stress and strain...exerted pressure.
- Stress: A force exerted per unit area within rocks or other Earth materials
- Strain: Deformation (size, shape, and orientation) of rock materials caused by stress
- Rock strength: Rock's ability to stand a magnitude level of stress before rupture
- Earthquake: Strain accumulated beyond rock strength producing eventual release of energy

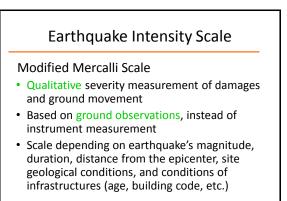
Causes for Earthquakes

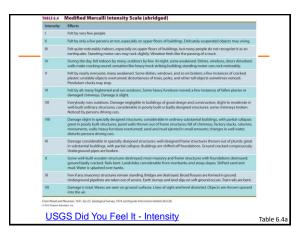

Earthquake: Sudden release of strain energy caused by rock rupture (through faulting) – Brittle deformation

Earthquakes induced by human activities:

- Much smaller magnitude
- Reservoir-induced earthquakes
- Deep waste disposal and earthquake
- Nuclear explosions (underground testing)

Earthquake Magnitude


- Focus: The point at depth where the rocks ruptured to produce the earthquake.
- Epicenter: The location on the surface of Earth above the focus.
- Moment magnitude: Measure of the energy released by the earthquake. Estimated by examining the records from seismographs. More appropriate for large EQs.
- Richter magnitude: Describes the energy released by an earthquake. It is based upon the amplitude or size of the largest seismic wave produced by an earthquake.



Earthquake Magnitude Scale

- Richter scale: amplitude of ground motion-
 - Increasing one order in magnitude = tenfold increase in amplitude
- Moment magnitude scale:
 - Measuring the amount of strain energy released
 - Based on the amount of fault displacement
 - Applicable over a wider range of ground motions than the Richter scale
- Earthquake energy: Increase one order in magnitude, about a 32-times increase in energy

TABLE 6.2	Worldwide Magnitude and Frequency of Earthquakes, by Descriptor Classification		
Descriptor	r Magnitude	Average Annual Number of Events	
Great	8 and higher	1	
Major	7-7.9	18	
Strong	6–6.9	120	
Moderate	5-5.9	800	
Light	4-4.9	6,200 (estimated)	
Minor	3-3.9	49,000 (estimated)	
Very minor	r <3.0	Magnitude 2–3, about 1,000 per day	
		Magnitude 1–2, about 8,000 per day	

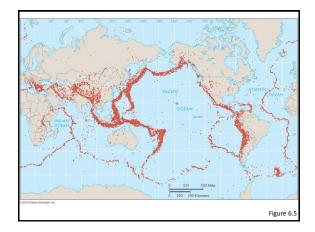


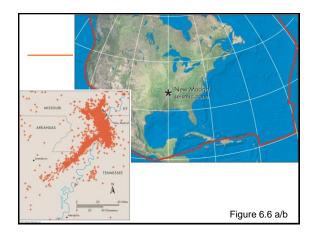
Plate Boundary and Earthquakes

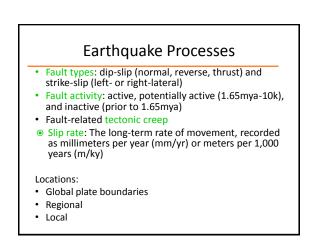
- Most earthquakes concentrated along plate boundaries (nearly all catastrophic earthquakes are shallow earthquakes). Some interplate.
- Divergent plate boundary: Shallow earthquakes
- Transform plate boundary: Shallow to intermediate earthquakes
- Convergent plate boundary: Wide zone of shallow, intermediate, and deep earthquakes.
 - \sim 80% of seismic energy released along the earthquake zone around the Pacific rim.

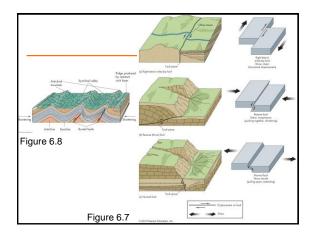
Major Intraplate Earthquakes

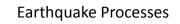
Intraplate earthquakes: earthquakes occurs within the plate, away from plate boundaries.

- In the eastern United States are generally more damaging due to stronger rocks that transmit earthquake waves more efficiently than rocks in the west.
- Even in the "stable" interior of the North American plate, the possibility of future damage demands that the earthquake hazard should be considered when constructing power plants and dams.

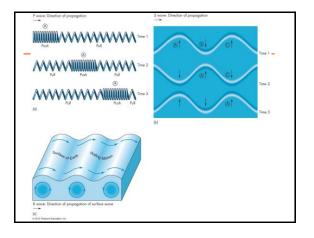

Major Intraplate Earthquakes


1811-1812 New Madrid earthquake; M >8.0


- Destroyed New Madrid, unknown loss of life
- Rang church bells as far away as Boston
- Forests flattened

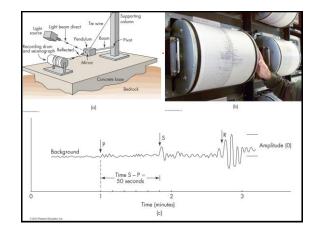

1886 Charleston earthquake; M 7.5

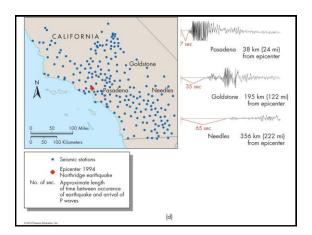
- Killed 60 people
- · Damaged or destroyed most buildings
- Impacted area beyond 1000km (620mi)



Faults almost never occur as a single rupture. Rather, they form **fault zones.**

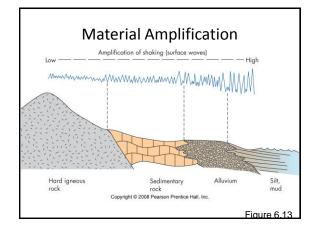
- Most long faults or fault zones, such as the San Andreas fault zone, are *segmented*
 - Earthquake segment: Part of a fault zone has ruptured as a unit during historic and prehistoric earthquakes.
- Paleoseismology: The study of paleoseismicity (prehistoric seismic activity) from the geologic environment.

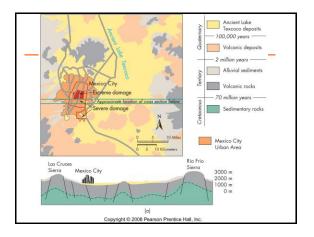

Seismic Waves

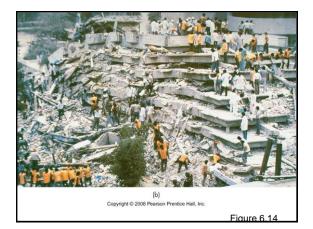

- Generated from the earthquake focus
- P-waves: compression waves, travel faster through all physical states of media
- S-waves: shear waves, travel slower than P waves, but faster than surface waves, only propagate through solid materials
- Surface waves: moving along Earth's surface, travel slowest, but cause most of the damage

Measuring Seismic Waves

- Seismograph or seismometer: Device to record the seismic waves
- Seismogram: The record of an earthquake
- Amplitude of seismic waves: Amplitude of ground vibration. (wave height)
- First arrival of seismic waves
 - Determine the time of earthquake
 - Distance to epicenter from a seismograph based on the difference in arrival time between P waves and S waves

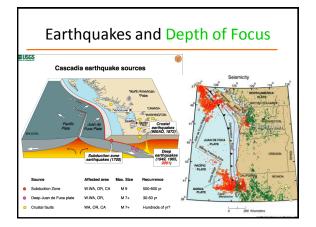



Material Amplification


• Seismic waves travel differently through different rock materials.

- Propagate faster through dense and solid rocks

- Material amplification: Intensity (amplitude of vertical movement) of ground shaking more severe in <u>unconsolidated</u> materials.
 - Seismic energy attenuated more and propagated less distance in unconsolidated materials
- Directivity: Another amplification effect, the intensity of seismic shaking increases in the direction of the fault rupture

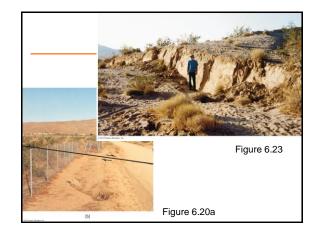


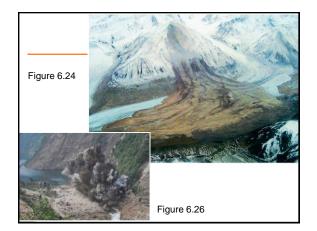
Ground Acceleration

- Ground motion is related to the amplitude of seismic waves and its accelerations.
 - Acceleration is the rate of velocity change with time.
- Measured by accelometers in terms of the acceleration of gravity -(1g) is equal to 9.8 m/sec²
- Both vertical and horizontal accelerations
- M 6.0 to M 6.9 can have 0.3 to 0.7 g
- Structure designs target to withstand 0.6 to 0.7 g

Earthquake Cycles

- Elastic strain non-permanent deformation.
- Elastic rebound 'snap' of rocks back to original shape as elastic strain is recovered.

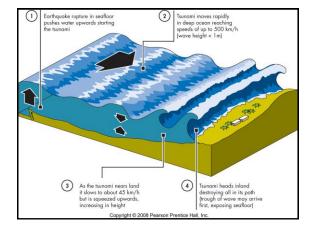

Stages of earthquake cycle:

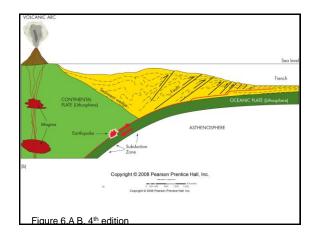

- Aftershock stage and inactivity
- Stress accumulation stage
- Foreshocks
- Main shock (major earthquake)

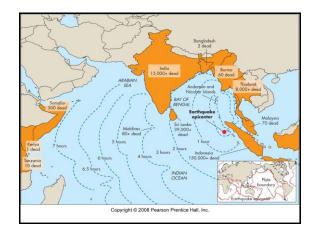
Effects of Earthquakes

Primary Effects -

- Ground shaking, tilting, and ground rupture
- Loss of life and collapse of infrastructure Secondary Effects –
- Landslides, liquefaction, and tsunamis
- Fires, floods, and diseases
- Tertiary Effects -
- Social and psychological impacts

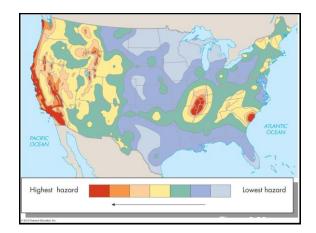




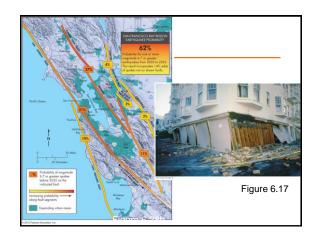

Effects of Earthquakes: Tsunami

 Triggered by earthquake, submarine volcanic eruption, underwater landslide, asteroid impact

- Recent tsunami examples:
- 1883 Eruption of Krakatoa, 36,000 deaths
- 1960 (M 9.5) Chile earthquake, 61 deaths in Hawaii
- 1964 (M 9.2) Alaska earthquake, 130 deaths in AK/CA
- 1993 (M 7.8) earthquake Japan, 120 deaths in Japan
- 1998 (M 7.1) Papua New Guinea earthquake, 2100 deaths
- 2004 (M 9.1) Indonesian earthquake, about 230,000 deaths
- 2010 (M 8.8) Chile earthquake, about 20 coastal deaths
- 2011 (M 9.0) Japan earthquake, about 15,700 deaths



Earthquake Risks


- Probabilistic methods for a given magnitude or intensity of a period of time
- Earthquake risk of an area
- Earthquake risk of a fault segment
- Possible sequencing of earthquakes on segments along a fault?

Construction of seismic hazard maps Conditional probabilities for future earthquakes

Earthquake Prediction

- Long-term prediction
 - Earthquake hazard risk mapping
- Short-term prediction (forecast)
 - Frequency and distribution pattern of foreshocks
 - Deformation of the ground surface: Tilting, elevation changes
 - Emission of radon gas
 - Seismic gap along faults
 - Abnormal animal activities?

Response to Earthquake Hazards

Hazard Reduction Programs:

- Develop a better understanding of the source and processes of earthquake
- Determine earthquake risk potential
- Predict effects of earthquakes
- Apply research results

Response to Earthquake Hazards

Adjustments to earthquake activities:

- Site selection for critical facilities
- Structure reinforcement and protection
- Land-use regulation and planning
- Emergency planning and management: Insurance and relief measures

Earthquake Warning Systems

- Technically feasible: ~ 1 minute warning
- Network of seismometers, sensing the first earthquake motion and sending a warning to critical facilities and public
- Warning system
 - Not a prediction tool
 - Can create a false alarm
- Better prediction and better warning system?

Perception of the Earthquake Hazard

- Public education and preparedness for the earthquake potential, even psychologically
- Pre-earthquake planning: what to do when struck
- During-earthquake: understand the situation and formulate a good strategy
- Post-earthquake emergency response
- Better engineering structural designs to minimize the future hazard risks

Applied and Critical-Thinking Topics

- What is the main lesson from the recent earthquakes in Italy and Haiti? How important is the wealth of a country to reducing the earthquake hazard?
- From your point of view, what can an individual citizen do to minimize the earthquake impact risks?
- What would be your approach to present info on earthquake hazard to people who knew very little about earthquake?
- Propose geologic scenarios that may change the global earthquake distribution patterns.