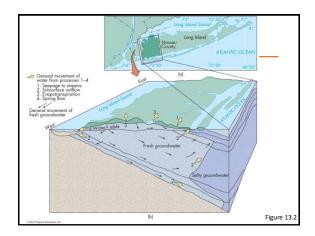
# Introduction to Environmental Geology, 5e

Chapter 13 Water Resources

Jennifer Barson – Spokane Falls Community College

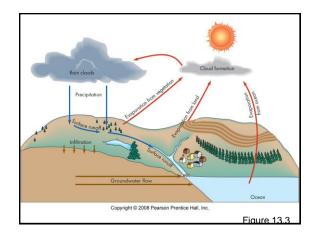

### Chapter 13: Overview

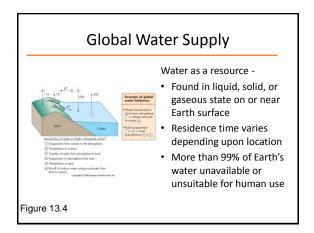
- Understand the water cycle and supply
- Understand the main types of water use
- Know basic surface and groundwater processes
- Be able to discuss principles of water management
- Know why we are facing a global water shortage linked to food supply

### Case History: Long Island

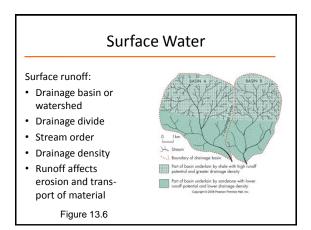
- GW pollution serious problem on western end of the island since beginning of 20<sup>th</sup> century
- GW below Nassau County is extensive, yet intense pumping has caused ~15m decline in water level.
- Water needs for 3 million people.
- · Salt water intrusion due to decline in water level
- Urbanization triggered more serious water pollution

   urban runoff, sewage, fertilizers, road salt, industrial and other waste, landfills





# Water: A Global Perspective

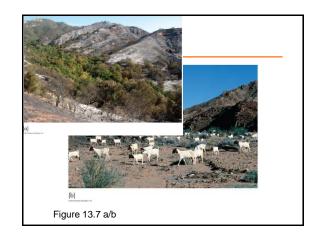
- Cyclic, dynamic nature
  - Global movement of water between different water storage compartments
- Global distribution
  - Abundance is not necessarily the problem
  - Distribution in space and over time is an issue
  - Supply versus usage is an issue
  - Water quality is an issue
- Major processes: evaporation, precipitation, transpiration, surface runoff, groundwater flow


# **Global Water Cycle**

- Water's vertical movement
  - Upflow: Evaporation, transpiration
  - Downflow: Precipitation and infiltration
- Water's horizontal movement
  - Surface runoff
  - Shallow subsurface through flow
  - Groundwater flow



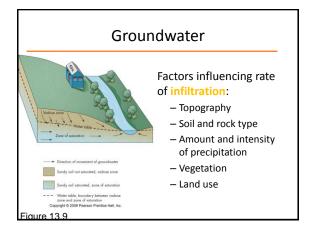



| ABLE 13.1 The World's Water Supply (Selected Examples) |                    |                                 |                              |                                                |  |
|--------------------------------------------------------|--------------------|---------------------------------|------------------------------|------------------------------------------------|--|
| Location                                               | Surface Area (km²) | Water Volume (km <sup>3</sup> ) | Percentage<br>of Total Water | Estimated Average<br>Residence Time            |  |
| Oceans                                                 | 361,000,000        | 1,230,000,000                   | 97.2                         | Thousands of years                             |  |
| Atmosphere                                             | 510,000,000        | 12,700                          | 0.001                        | 9 days                                         |  |
| Rivers and streams                                     | -                  | 1,200                           | 0.0001                       | 2 weeks                                        |  |
| Groundwater; shallow<br>to depth of 0.8 km             | 130,000,000        | 4,000,000                       | 0.31                         | Hundreds to many<br>thousands of years         |  |
| Lakes (freshwater)                                     | 855,000            | 123,000                         | 0.009                        | Tens of years                                  |  |
| Ice caps and glaciers                                  | 28,200,000         | 28,600,000                      | 2.15                         | Up to tens of thousands<br>of years and longer |  |



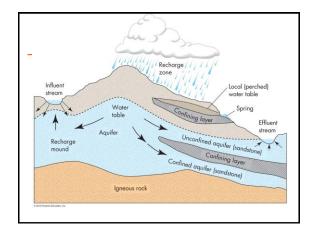
# Surface Water

Factors affecting runoff and sediment yield:


- Geologic factors type and structure of soils and local rocks.
  - Drainage density is high on shale and low on sandstone.
- Topographic factors relief and slope gradient
- Climatic factors type, intensity, duration, and distribution of precipitation
- Vegetation factors type, size, and distribution
- Land-use factors
  - Agriculture, grazing, and urbanization



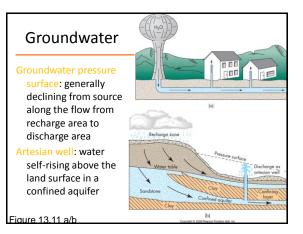
### Groundwater

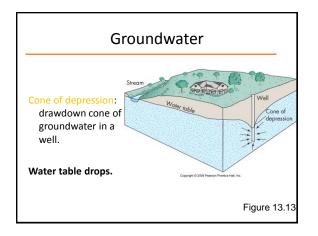

Water found beneath the surface of Earth within the zone of saturation.

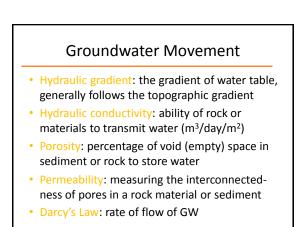
- Vadose zone (unsaturated zone or zone of aeration): pores mostly filled with air
- Zone of saturation: pores mostly filled with H<sub>2</sub>O
- Water table: the boundary between the zone of saturation and zone of aeration
- Perched water table: local water table above a regional water table



### Groundwater


- Aquifer: a unit capable of supplying water at an econimically useful rate
- Aquitard or aquiclude: a confining layer or unit restricting and retarding GW flow
- Unconfined aquifer: no overlying confining layer
- Confined aquifer: has an overlying aquitard layer
- Perched aquifer: local zone of saturation above a regional water table

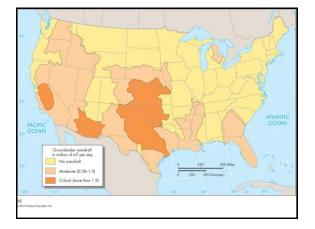


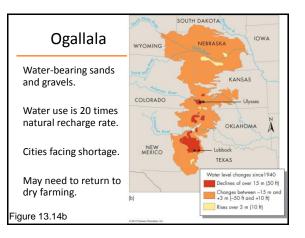


# Groundwater

Groundwater recharge and discharge -

- Recharge zone: area where water infiltrates downward from the surface to GW
- Discharge zone: area where GW is removed from and aquifer (spring, well, river)
- Influent stream: above the water table, recharge water to GW, may be intermittent
- Effluent stream: perennial stream with the addition of GW when precipitation is low

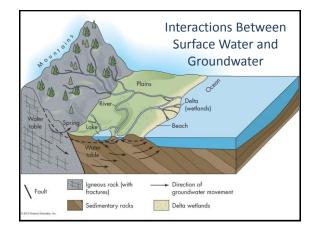





| BLE 13.2 Porosity and Hydraulic Conductivity of Selected Earth Materials                    |                          |              |                                             |  |  |
|---------------------------------------------------------------------------------------------|--------------------------|--------------|---------------------------------------------|--|--|
|                                                                                             | Material                 | Porosity (%) | Hydraulic Conductivity <sup>1</sup> (m/day) |  |  |
|                                                                                             | Clay                     | 50           | 0.041                                       |  |  |
|                                                                                             | Sand                     | 35           | 32.8                                        |  |  |
|                                                                                             | Gravel                   | 25           | 205.0                                       |  |  |
| 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | Gravel and sand          | 20           | 82.0                                        |  |  |
|                                                                                             | Sandstone                | 15           | 28.7                                        |  |  |
|                                                                                             | Dense limestone or shale | 5            | 0.041                                       |  |  |
|                                                                                             | Granite                  | 1            | 0.0041                                      |  |  |

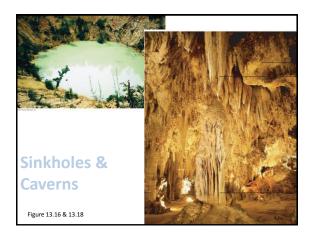
### Groundwater Use and Supply


- Groundwater as primary drinking water source for ~50 percent of the U.S. population.
- Groundwater overdraft\* problems in many parts of the country.
  - \*Extraction rate exceeding recharging rate
- Estimated 5 percent of groundwater depleted, but water level declined more than 15 m (50 ft) in some areas.
  - "Groundwater mining"
  - Ogallala Aquifer in the U.S.



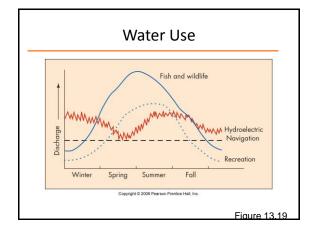


## SW and GW Interactions


- Overdraft of GW leads to lower water levels in streams, lakes, and reservoirs
- Overuse of SW yields lower discharge rates of GW (discharge...volume of water per unit time)
- Effluent stream (in GW discharge zone): tends to be perennial
- Influent stream (in GW recharge zone above water table): often intermittent
- "Special linkages" karst terrains



# Karst Topography Problems


Water pollution occurs where sinkholes have been used for waste disposal.

- Cavern systems prone to collapse-
  - sinkholes may form in areas that damage buildings on the ground surface, roads, and other facilities
- Areas underlain by limestone.
- As a result of the mining, important karst springs where water emerges from caverns are being changed, causing a reduction in biodiversity

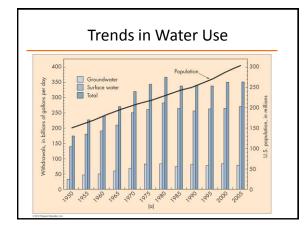


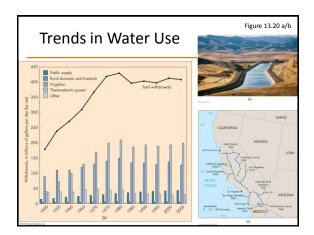
# Water Use

- Desalination: reduction of salt content in water
   High cost and high consumption of energy
- Offstream use: removal or diversion from SW or GW sources temporarily (irrigation, hydroelectric, and industrial use)
- Consumptive use: type of offstream use of water without intermediate return to SW or GW system (transpiration and human use)
- Instream use: navigation, fish and wildlife, and recreational uses



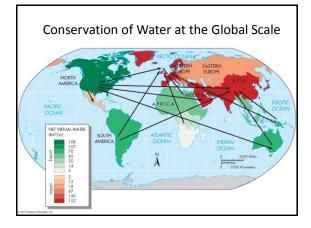
### Water Use


Association with major urban areas:


- Overwithdrawal of groundwater
- Overuse of local surface water
- Threats of local urban landfills to the water supply (Long Island, NY)
- Water import issues and problems:
  - What is the distance to transport?
  - How much water is available? From where?
  - Conflicts with other areas for water rights?
  - Long-range planning? Population growth? Quality?

### Trends in Water Use

Based on the data from 1950–1995


- Surface water use far greater than groundwater use
- The rate of water use decreased and leveled off since 1980
- Irrigation and thermoelectric are major fresh consumptive water use
- Less fresh water use since 1980 due to new tech and water recycling
- Water use in rural and urban areas is up





# Water Conservation

- Engineering technology and structure (canals)
   Regulating irrigation and reducing evaporation
- Engineering technology and structure (canals): Regulating irrigation and reducing evaporation
- Better technologies in power plants and other industries to reduce or reuse.
   Less use of water due to improved efficiency
- Increased water reuse and recycling
- Domestic water use (10% of total national withdrawals) poses a threat to local supplies



## Water Management

Needs for water management

- Increasing demand for water use (population and economic development)
- Water supply problems in semiarid to arid regions
- Water supply problems in mega cities of humid regions. Water quality is also an issue.
- Water traded as a commodity: Capital, market, and regulations?

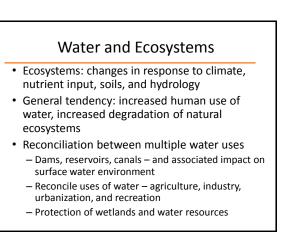
### Water Management

Aspects to be considered: Leopold philosophy

- Natural environmental factors: Geologic, geographic, and climatic
- Human environmental factors: Economic, social, and political issues.
- Strategies:
  - More SW use in wet years, more GW use in dry years
  - Reuse and recycle water regular basis as well as emergencies

### Management of the Colorado River

Managing the water


- Water appropriation to seven states in the United States and to Mexico
- Local needs versus regional needs (Colorado River compact of 1922)
- The United States versus Mexico (Treaty with Mexico in 1944)
- Human use versus needs of lands (1974 Salinity Control Act)

# Management of the Colorado River

#### Managing the river:

- Dam construction
- Impact on flood frequency
- Impact on sediment distribution, particularly downstream
- · Impact on wildlife habitats
- Controlled and planned floods





# **Emerging Global Water Shortage**

- Global patterns of water shortage
- Depleted water resources: over-drafted aquifers, dried lakes (Aral Sea), troubled streams (Colorado and Yellow River)
- Polluted, limited water resources due to development and increased wastes
- Demands for water resources tripled as population more than doubled in the last 50 yr
- Climate change...causing more problems

### Critical Thinking Topics

- In your area, which type of water source (surface water or groundwater) is more important? Why? Why not?
- If we change the ways we use water, what would be the impact on the global water cycle?
- What sort of wetlands are found in your region? Any changes over the years?
- Which continent will the global warming have a greater impact on its water resources?