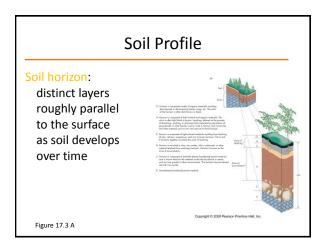
Introduction to Environmental Geology, 5e

Chapter 17 Soils and Environment

Jennifer Barson – Spokane Falls Community College

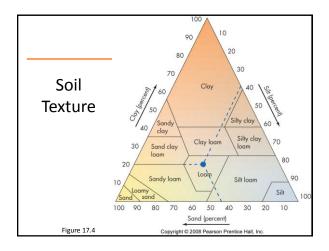
Chapter 17: Overview

- Understand soil terminology and the processes responsible for the development of soils
- Understand soil fertility and the interactions of water in soil processes
- Become familiar with soil classification
- Know primary engineering properties of soils
- Know relationships between land use and soils
- Know sediment pollution and management
- Understand how soils affect land-use planning, and how we can sustain soil resources


Case History: Times Beach, MO

- River town with pop. 2400, west of St. Louis
- In 1983, the town evacuated and purchased by government for \$36 million
- Entire town contaminated with dioxin from the oil sprayed on the road to control dust
- Dioxin: Composed of oxygen, hydrogen, carbon, and chlorine, extremely toxic to mammals and a carcinogen in humans; about 75 types of dioxin
- Controversy concerning the effects of human exposure to dioxin, the evacuation an overreaction?

Soil


- Supporting rooted plant life: Solid Earth materials altered by physical, chemical, and biological processes
- Land-use planning: Soil suitability is large part of land capability
- Waste disposal: Soil properties are critical
- Impact of natural hazards: Affected by soil properties
- Climatic signal: clues to the past climate

Soil						
 Soil profiles: Weathering Physical and chemical breakdown of rocks Residual soil Transported soil Soils are open systems 	 Soil horizons: Movement of materials in soil creates distinct horizons parallel to the land surface Soil profile consists of soil horizons: O horizon A horizon E horizon B horizon C horizon C horizon R horizon 					

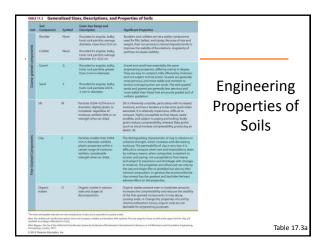
Soil's General Properties

- Color: Depending on the amount of organic matter, iron oxides, and soil water retention
- Texture: Relative proportions of sand, silt, and clay-sized particles affect soil's strength and ability to retain water and nutrients
- Structure:
 - Aggregates of soil as peds
 - The more developed with time, the more complex a soil's structure, from granular to blocky to prismatic

	-	Horizon		
Types of peds	Typical size range	usually found in	Comments	
Granular	1–10 mm	A	Can also be found in B and C horizons	
Blocky	5-50 mm	B,	Are usually designated as angular or subangular	
Prismatic	10-100 mm	в,	If columns have rounded tops, structure is called columnar	
Platy	1–10 mm	E	May also occur in some B horizons	

Soil Fertility

- Soil's capability to supply nutrients needed for plant growth, such as N, P, K
- A complex ecosystem in itself, containing millions of living things in a single cubic meter
- Fertility changes:
 - Increase: Applying fertilizers or mixing materials to improve soil texture
 - Decrease: Leaching or soil erosion


Soil Water

- Soil pores filled with air or liquid (water)
- Soil in saturated condition, if filled with water; otherwise unsaturated
- The saturation level of soil water changes with climate (hardly saturated in arid climate) and seasons (deficit vs. surplus conditions)
- Movement of water: important in pollution monitoring and management

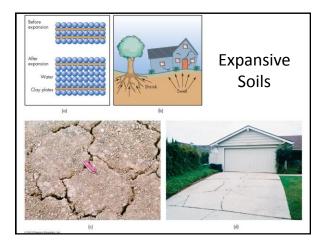
Soil Classification

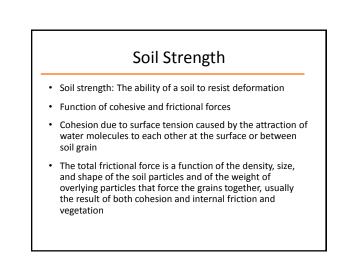
- Soil classification based on physical and chemical properties of the soil profile
- Unified soil classification system: widely used in engineering practice, based on particle size, abundance of organic material, and odor
- Useful for agricultural, environmental engineering, and land use planning (see Table 17.1 for properties of soil order)

		Major Division		Group Symbol	Soil Group Name	
	1	Clean Less than gravels 5% fines		GW	Well-graded gravel	
-	GRAVELS		5% fines	GP	Poorly graded gravel	
solus naterit mm)	GRAI	Dirty	More than 12% fines	GM	Silty gravel	
COARSE-GRAINED SOILS (more than half of material larger than 0.074 mm)	Multure If of m 0.074	gravels		GC	Clayey gravel	
E-GR/ han ha	Clean	Less than	SW	Well-graded sand		
COARS nore th	SANDS	sands	5% fines	SP	Poorly graded sand	
(T)	SAN	Dirty	More than 12% fines	SM	Silty sand	
		sands		sc	Clayey sand	
-	¥			ML	Silt	
OILS nateri 1 mm)	SILTS, NONPLASTIC			MH	Micaceous silt	
NED S If of n	ION			OL	Organic silt	
FINE-GRAINED SOILS (more than half of material smaller than 0.074 mm) CLAYS, SILTS, PLASTIC NONPLAST			CL	Silty clay		
			СН	High plastic clay		
	~			он	Organic clay	
Predominantly organics		PT	Peat and muck			

Engineering Properties of Soils

- Strength: Soil's ability to resist deformation, function of cohesive and frictional forces between soil particles
- Sensitivity: Measuring the changes in soil strength from disturbances
- Compressibility: Soil's tendency to consolidate or decrease in volume

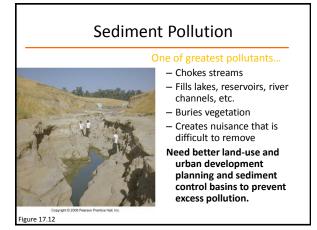


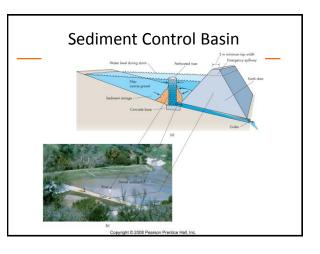

Engineering Properties of Soils

- Erodibility: The ease with which soil is removed by wind or water
- Hydraulic conductivity: The ease of soil to allow water to move through
- Corrosion potential: Depending on the chemistry of soil, soil-water content, and type of buried materials in the soil

Engineering Properties of Soils

- Ease of excavation: The degree of ease to remove soil using certain equipment during construction
- Shrink-swell potential: Soil's tendency to gain or lose water -
 - Expansive soils: Causing significant environmental problems in the U.S.
 - Changes in moisture content
 - Topography and drainage also significant

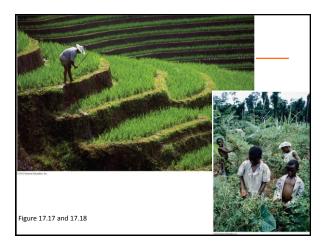



Rates of Soil Erosion

- Volume, mass, or weight of soil removed from a specific area during a specific period of time, kilograms per year per hectare
- The Universal Soil Loss Equation: A = RKLSCP A: Long-term average annual soil loss for the site
 - R: Long-term rainfall runoff erosion factor
 - K: Soil erodibility index factor
 - L: Hillslope/length factor
 - S: Hillslope/gradient factor
 - C: Soil cover factor
 - P: Soil erosion-control practice factor

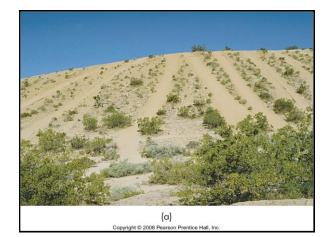
Soil Erosion

- Urbanization: Rapid development and construction
- Desertification: Overgrazed or disturbed
- Deforestation: Forest over-logged or burned
- Surface mining: in 2000, 65% coal produced from surface mining
- Soil erosion and deposition: by natural hazards, such as floods



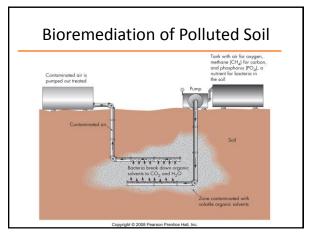
Land-Use and Soil Problems

- Influencing the pattern, amount, and intensity of surface-water runoff, erosion, and sedimentation
- Agriculture: Estimated 10% of the world has best agricultural land damaged due to soil erosion and overuse during the last 50 years
- Better practice to sustain soils:
 - Contour plowing
 - No-till agriculture (no plowing)
 - Terracing slopes, retaining walls
 - Planting more than one crop, particularly in tropical areas or crop rotation.



Land-Use and Soil Problems

- Urbanization: Conversion of agricultural, forest, and rural lands
- Soil scraped off and lost
- Changes of soil properties
- Soil pollution: Use of chemicals
- Changes of surface runoff, sediment yield, and stream dynamics affecting soil and soil erosion


Land-Use and Soil Problems

- Off-road vehicles: recreation, tourism, etc.
- In deserts, coastal dunes, forested mountains, lake-side, etc.
- Cause changes in rates of soil erosion, hydrology, habitats of plants and animals
- Impacts from the increased number of mountain bikes in parks, national forests, etc.

Soil Pollution

- Soil pollution: By any materials detrimental to human and other living organisms, such as organic chemicals, inorganic chemicals, toxic substances
- Intentionally or accidentally applied to soils
- Inappropriate disposal of waste materials
- Treatment: Excavation, disposal, incineration, and bioremediation

Soil Survey and Land-Use Planning

- Soil survey: Providing important information about soils
- Soil properties: Critical for the best use of land; specific soils suitable for certain land use
- Soil's engineering properties: Necessary info for identifying potential problems before construction
- Detailed soil maps: Helpful and important in land use planning

Critical Thinking Topics

- Defend the statement that soil erosion is an environmental problem that could seriously damage, or even cause the collapse of, our civilization.
- What are things an individual citizen can do to prevent soil erosion?
- Does the impact of soil erosion go beyond where it occurs? Explain your answer
- Are the soil problems more severe in developed countries or developing countries?